首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Mitochondria isolated from human term placenta were able to form citrate from malate as the only added substrate. While mitochondria were incubated in the presence of Mn2+ the citrate formation was stimulated significantly both by NAD+ and NADP+ and was inhibited by hydroxymalonate, arsenite, butylmalonate and rotenone. It is concluded that NAD(P)-linked malic enzyme is involved in the conversion of malate to citrate in these mitochondria. It has also been shown that the conversion of cholesterol to progesterone by human term placental mitochondria incubated in the presence of malate was stimulated by NAD+ and NADP+ and inhibited by arsenite and fluorocitrate. This suggests that the stimulation by malate of progesterone biosynthesis depends not only on the generation of NADPH by NAD(P)-linked malic enzyme, but also on NADPH formed during further metabolism of pyruvate to isocitrate which is in turn efficiently oxidized by NADP+-linked isocitrate dehydrogenase.  相似文献   

2.
It has been shown that ADP, ATP, NAD(P), and NAD(P)H significantly stimulate pyruvate production from malate by intact uncoupled human term placental mitochondria. No stimulation by ADP was observed when mitochondria were incubated in the presence of NAD(P) or NAD(P)H or when mitochondrial membrane had been disrupted. Atractyloside and oligomycin were without effect on ADP- and ATP-stimulated pyruvate production. Other dinucleotides tested such as GDP, UDP, and CDP, stimulated pyruvate production only slightly when mitochondria were incubated in the absence of phosphate. The rate of pyruvate production by intact mitochondria is commensurate with partly purified NAD(P)-linked malic enzyme activity as measured by NAD(P) reduction as far as the effects of pH of hydroxymalonate on these both processes is concerned. It is concluded that pyruvate production by intact human placental mitochondria is catalyzed by NAD(P)-linked malic enzyme and that this process is stimulated by ADP and ATP.  相似文献   

3.
Mitochondria isolated from the heart of cod (Gadus morrhua callarias) oxidized malate as the only exogenous substrate very rapidly. Pyruvate only slightly increased malate oxidation by these mitochondria. This is in contrast with the mitochondria isolated from rat and rabbit heart which oxidized malate very slowly unless pyruvate was added. Arsenite and hydroxymalonate (an inhibitor of malic enzyme) inhibited the respiration rate of mitochondria isolated from cod heart, when malate was the only exogenous substrate. Inhibition caused by hydroxymalonate was reversed by the addition of pyruvate. In the presence of arsenite, malate was converted to pyruvate by cod heart mitochondria. Cod heart mitochondria incubated in the medium containing Triton X-100 catalyzed the reduction of NADP+ in the presence of L-malate and Mn2+ at relatively high rate (about 160 nmoles NADPH formed/min/mg mitochondrial protein). The oxidative decarboxylation of malate was also taking place when NADP+ was replaced by NAD+ (about 25 nmol NADH formed per min per mg mitochondrial protein). These results suggest that the mitochondria contain both NAD+- and NADP+-linked malic enzymes. These two activities were eluted from DEAE-Sephacel as two independent peaks. It is concluded that malic enzyme activity (presumably both NAD+- and NADP+-linked) is responsible for the rapid oxidation of malate (as the only external substrate) by cod heart mitochondria.  相似文献   

4.
1. The interrelationship between progesterone (from cholesterol) biosynthesis and oxidative phosphorylation in human placental mitochondria was examined. 2. ADP and ATP stimulated the malate, succinate and alpha-ketoglutarate-supported progesterone biosynthesis probably via the energy-dependent pyridine nucleotide transhydrogenase activation. The effect of ADP was abolished by rotenone and antimycin in the presence of malate or alpha-ketoglutarate. 3. In the non-energized state of mitochondria malate may supported progesterone biosynthesis by the malic enzyme-dependent pathway. 4. The inhibitory effects of antimycin or cyanide, and the stimulatory effect of rotenone on the succinate-supported progesterone biosynthesis indicate that the succinate to malate conversion is a necessary condition for the stimulation of progesterone biosynthesis from cholesterol. 5. alpha-Ketoglutarate plus malonate did support progesterone biosynthesis also in the presence of ADP or ATP and to a lesser degree in the presence of DNP and rotenone. Arsenate in the presence of alpha-ketoglutarate, malonate, dinitrophenol and rotenone did not affect significantly progesterone biosynthesis. These results indicate that NADPH may be generated also by a non-energy-dependent transhydrogenation in placental mitochondria.  相似文献   

5.
The relationship between malate dependent conversion of cholesterol to progesterone and citrate biosynthesis in human term placental mitochondria has been investigated. It has been shown that ADP and ATP (but not AMP) stimulate, significantly, both progesterone and citrate formation. The stimulatory effect of these adenine nucleotides was dependent on the presence of Mn2+ in the incubation medium. When Mn2+ was omitted or replaced by Mg2+ only negligible stimulatory effect of ADP and ATP was observed. Atractyloside and oligomycin were without effect on ADP and ATP stimulated progesterone and citrate production. Other dinucleotides tested as: GDP, UDP and CDP stimulated both progesterone and citrate formation only slightly. In all the experiments presented the rate of progesterone biosynthesis was found to be significantly correlated with the rate of citrate production. The experimental results presented in this paper suggest that the stimulatory effect of ADP and ATP on malate dependent progesterone biosynthesis is a consequence of an increased conversion of malate to tricarboxylic Krebs cycle intermediates. The possible mechanism by which ATP and ADP stimulate the citrate formation in human placental mitochondria is discussed.  相似文献   

6.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   

7.
Michel Neuburger  Roland Douce 《BBA》1980,589(2):176-189
Mitochondria isolated from spinach leaves oxidized malate by both a NAD+-linked malic enzyme and malate dehydrogenase. In the presence of sodium arsenite the accumulation of oxaloacetate and pyruvate during malate oxidation was strongly dependent on the malate concentration, the pH in the reaction medium and the metabolic state condition.Bicarbonate, especially at alkaline pH, inhibited the decarboxylation of malate by the NAD+-linked malic enzyme in vitro and in vivo. Analysis of the reaction products showed that with 15 mM bicarbonate, spinach leaf mitochondria excreted almost exclusively oxaloacetate.The inhibition by oxaloacetate of malate oxidation by spinach leaf mitochondria was strongly dependent on malate concentration, the pH in the reaction medium and on the metabolic state condition.The data were interpreted as indicating that: (a) the concentration of oxaloacetate on both sides of the inner mitochondrial membrane governed the efflux and influx of oxaloacetate; (b) the NAD+/NADH ratio played an important role in regulating malate oxidation in plant mitochondria; (c) both enzymes (malate dehydrogenase and NAD+-linked malic enzyme) were competing at the level of the pyridine nucleotide pool, and (d) the NAD+-linked malic enzyme provided NADH for the reversal of the reaction catalyzed by the malate dehydrogenase.  相似文献   

8.
We investigated the effects of calcium on the oxidative metabolism and steroidogenic activity of human term placental mitochondria. Submicromolar Ca(2+) concentrations stimulated state 3 oxygen consumption with 2-oxoglutarate and isocitrate and activated the 2-oxoglutarate and the NAD-isocitrate dehydrogenases by diminishing their Michaelis-Menten constants. Ca(2+) inhibited NADP-isocitrate dehydrogenase (NADP-ICDH) and the synthesis of progesterone. The NADP-ICDH maximal velocity was threefold higher than that of NAD-ICDH and had a threefold lower K(m) for isocitrate than NAD-ICDH. Isocitrate but not malate or 2-oxoglutarate supported progesterone synthesis. Calcium inhibition of progesterone synthesis was observed with isocitrate but not with malate or 2-oxoglutarate. Tight regulation of NADP-isocitrate dehydrogenase by calcium ions suggests that this enzyme plays an important role in placental mitochondrial metabolism.  相似文献   

9.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

10.
Metabolism of pyruvate and malate by isolated fat-cell mitochondria   总被引:7,自引:7,他引:0       下载免费PDF全文
1. Metabolism of pyruvate and malate by isolated fat-cell mitochondria incubated in the presence of ADP and phosphate has been studied by measuring rates of pyruvate uptake, malate utilization or production, citrate production and oxygen consumption. From these measurements calculations of the flow rates through pyruvate carboxylase, pyruvate dehydrogenase and citrate cycle have been made under various conditions. 2. In the presence of bicarbonate, pyruvate was largely converted into citrate and malate and only about 10% was oxidized by the citrate cycle; citrate and malate outputs were linear after lag periods of 6-9min and 3min respectively, and no other end products of pyruvate metabolism were detected. On the further addition of malate or hydroxymalonate, the lag in the rate of citrate output was less marked but no net malate disappearance was detected. If, however, bicarbonate was omitted then net malate uptake was observed. Addition of butyl malonate was found to greatly inhibit the metabolism of pyruvate to citrate and malate in the presence of bicarbonate. 3. These results are in agreement with earlier conclusions that in adipose tissue acetyl units for fatty acid synthesis are transferred to the cytoplasm as citrate and that this transfer requires malate presumably for counter transport. They also support the view that oxaloacetate for citrate synthesis is preferentially formed from pyruvate through pyruvate carboxylase rather than malate through malate dehydrogenase and that the mitochondrial metabolism of citrate in fat-cells is restricted. The possible consequences of these conclusions are discussed. 4. Studies on the effects of additions of adenine nucleotides to pyruvate metabolism by isolated fat-cell mitochondria are consistent with inhibition of pyruvate carboxylase in the presence of ADP and pyruvate dehydrogenase in the presence of ATP.  相似文献   

11.
Oxaloacetic acid (OAA) and fluoro-oxaloacetic acid (FOAA) areboth specific inhibitors of malate dehydrogenases. ExogenousOAA penetrates the mitochondria rapidly, being converted topyruvate, citrate, or malate depending on the reaction conditions,with the relief of the inhibition, whereas inhibition by FOAAis permanent Exogenous OAA removal has been used as a modelfor endogenous OAA removal by measuring the time taken for theinhibition to be relieved in the presence of various inhibitorsand substrates. Hydroxymalonate behaves primarily as a malicenzyme inhibitor while butylmalonate acts as an inhibitor ofmalate transport in intact mitochondria, although at high concentrationsboth compounds inhibit the malate dehydrogenase. The NAD associated with the various enzymes behaves in a complexcompartmented manner. It is concluded that the oxidation ofmalate takes place mainly via the membrane-bound malate dehydrogenase,linked through all three phosphorylation sites. The OAA producedis removed by the combined action of the soluble malate dehydrogenaseand malic enzyme of the matrix. Reducing equivalents from themalic enzyme can also gain access to the full respiratory chainand utilize all three phosphorylation sites. Evidence is presented for malic enzyme activity on the outsideof the inner membrane and in the matrix compartment  相似文献   

12.
A sensitive isotope exchange method was developed to assess the requirements for and compartmentation of pyruvate and oxalacetate production from malate in proliferating and nonproliferating human fibroblasts. Malatedependent pyruvate production (malic enzyme activity) in the particulate fraction containing the mitochondria was dependent on either NAD+ or NADP+. The production of pyruvate from malate in the soluble, cytosolic fraction was strictly dependent on NADP+. Oxalacetate production from malate (malate dehydrogenase, EC 1.1.1.37) in both the particulate and soluble fraction was strictly dependent on NAD+. Relative to nonproliferating cells, NAD+-linked malic enzyme activity was slightly reduced and the NADP+-linked activity was unchanged in the particulate fraction of serum-stimulated, exponentially proliferating cells. However, a reduced activity of particulate malate dehydrogenase resulted in a two-fold increase in the ratio of NAD(P)+-linked malic enzyme to NAD+-linked malate dehydrogenase activity in the particulate fraction of proliferating fibroblasts. An increase in soluble NADP+-dependent malic enzyme activity and a decrease in NAD+-linked malate dehydrogenase indictated an increase in the ratio of pyruvate-producing to oxalacetate-producing malate oxidase activity in the cytosol of proliterating cells. These coordinate changes may affect the relative amount of malate that is oxidized to oxalacetate and pyruvate in proliferating cells and, therefore, the efficient utilization of glutamine as a respiratory fuel during cell proliferation.  相似文献   

13.
The regulatory properties of the NAD-dependent malic enzyme from the mitochondria of Ascaris suum have been studied. The malate saturation curve exhibits sigmoidicity and the degree of this sigmoidicity increases as the pH is increased. Fumarate was the only compound tested that stimulated the enzyme activity, whereas oxalacetate was the most powerful inhibitor. Activation by low levels of fumarate was found to be competitive with malate. It is proposed that this stimulation has physiological significance in controlling the dismutation reaction in the parasite. The branched-chain volatile fatty acid excretion products, tiglate, 2-methylbutanoate, and 2-methylpentanoate, inhibited the enzyme activity and this inhibition was competitive with malate. The Ki values for these compounds are in the physiological range of their concentrations; therefore, it is suggested that they may aid in controlling the malic enzyme activity in vivo. Oxalacetate inhibition of malic enzyme activity was competitive with malate, and the Ki values decreased with an increase in pH. Two alternatives are proposed which could account for the lack of oxalacetate decarboxylation by the ascarid malic enzyme.  相似文献   

14.
Kinetic studies of Morris 7777 hepatoma mitochondrial NAD(P) malic enzyme were consistent with an ordered mechanism where NAD adds to the enzyme before malate and dissociation of NADH from the enzyme is rate-limiting. In addition to its active site, malate apparently also associates with a lower affinity with an activator site. The activator fumarate competes with malate at the activator site and facilitates dissociation of NADH from the enzyme. The ratio of NAD(P) malic enzyme to malate dehydrogenase activity in the hepatoma mitochondrial extract was found to be too low, even in the presence of known inhibitors of malate dehydrogenase, to account for the known ability of NAD(P) malic enzyme to intercept exogenous malate from malate dehydrogenase in intact tumor mitochondria (Moreadith, R.W., and Lehninger, A.L. (1984) J. Biol. Chem. 259, 6215-6221). However, NAD(P) malic enzyme may be able to intercept exogenous malate because according to the present results, it can associate with the pyruvate dehydrogenase complex, which could localize NAD(P) malic enzyme in the vicinity of the inner mitochondrial membrane. The activity levels of some key metabolic enzymes were found to be different in Morris 7777 mitochondria than in liver or mitochondria of other rapidly dividing tumors. These results are discussed in terms of differences among tumors in their ability to utilize malate, glutamate, and citrate as respiratory fuels.  相似文献   

15.
O2 uptake by potato and cauliflower bud mitochondria oxidizing malate was progressively inhibited as the pH of the external medium was increased, in response to accumulation of oxaloacetate. Adding 0.5 mM coenzyme A to the medium reversed this trend by stimulating intramitochondrial NAD-linked malic enzyme at alkaline pH. In intact potato mitochondria, coenzyme A stimulation of malic enzyme was not observed when the external pH was above 7.5; in cauliflower mitochondria, coenzyme A stimulated even at pH 8. This difference in the response of intact mitochondria was attributed to an inherent difference in the properties of malic enzyme from the two tissues. Malic enzyme solubilized from potato mitochondria was inactive at pH values above 7.8, while that from cauliflower mitochondria retained its activity at pH 8 in the presence of coenzyme A. In potato mitochondria, coenzyme A stimulation of O2 uptake at alkaline pH was only observed when NAD+ was also provided exogenously. The results show that coenzyme A can be taken up by intact mitochondria and that pH, NAD+, and coenzyme A levels in the matrix act together to regulate malate oxidation.  相似文献   

16.
The Gram-negative bacterium Rhizobium meliloti contains two distinct malic enzymes. We report the purification of the two isozymes to homogeneity, and their in vitro characterization. Both enzymes exhibit unusually high subunit molecular weights of about 82 kDa. The NAD(P)(+) specific malic enzyme [EC 1.1.1.39] exhibits positive co-operativity with respect to malate, but Michaelis-Menten type behavior with respect to the co-factors NAD(+) or NADP(+). The enzyme is subject to substrate inhibition, and shows allosteric regulation by acetyl-CoA, an effect that has so far only been described for some NADP(+) dependent malic enzymes. Its activity is positively regulated by succinate and fumarate. In contrast to the NAD(P)(+) specific malic enzyme, the NADP(+) dependent malic enzyme [EC 1.1.1.40] shows Michaelis-Menten type behavior with respect to malate and NADP(+). Apart from product inhibition, the enzyme is not subjected to any regulatory mechanism. Neither reductive carboxylation of pyruvate, nor decarboxylation of oxaloacetate, could be detected for either malic enzyme. Our characterization of the two R. meliloti malic enzymes therefore suggests a number of features uncharacteristic for malic enzymes described so far.  相似文献   

17.
Chicken liver mitochondria were isolated in relatively pure form as indicated by electron microscopy and marker enzyme assay. The rate of respiration, respiratory control index and ADP/O ratios with several different substrates indicated that chicken liver mitochondria are more uncoupled than rat liver mitochondria. Chickens have ten-fold higher malate concentrations in liver than do rats, 2-oxoglutarate was also more abundant in chicken livers. Fasted birds had a five-fold increase in beta-hydroxybutyrate as compared with fed birds; whereas malate and lactate concentrations decreased. Fasted birds had increased levels of isocitrate dehydrogenase (NADP dependent) and lactate dehydrogenase in the cytosol, and increased malate dehydrogenase (NAD dependent), isocitrate dehydrogenase (NADP dependent) and malic enzyme activities in the mitochondria.  相似文献   

18.
Role and location of NAD malic enzyme in thermogenic tissues of Araceae   总被引:4,自引:0,他引:4  
This work was done to discover how those nonphotosynthetic tissues of the Araceae that become thermogenic release, as CO2, carbon recently fixed by phosphoenolpyruvate carboxylase. Extracts of clubs of the spadix of Arum maculatum showed no activity for phosphoenolpyruvate carboxykinase and low activities of NADP malic enzyme. NAD malic enzyme activity in the above extracts and in those of thermogenic tissues of other Araceae was appreciable. Analysis of homogenates of clubs of Typhonium giraldii by differential centrifugation and sucrose gradients showed that NAD malic enzyme was confined to mitochondria. Centrifugation of mitochondria after freezing and thawing left all the NAD malic enzyme in the supernatant. NAD malic enzyme in isolated, intact mitochondria was completely latent, and was completely protected from exogenous trypsin. The responses of this latency and protection to different concentrations of Triton X-100 suggested that none of the NAD malic enzyme was accessible from either the outside or the intermembrane space of the mitochondria. Treatment of excised clubs of A. maculatum with 2-N-butylmalonate largely prevented the development of the rapid respiration responsible for thermogenesis, and severely inhibited dark fixation of 14CO2. The conclusion is that in mature clubs of the Araceae phosphoenolpyruvate is converted to malate in the cytosol by phosphoenolpyruvate carboxylase and NAD malate dehydrogenase, and that this malate then enters the mitochondrial matrix where it is converted to pyruvate by NAD malic enzyme.  相似文献   

19.
The effect of rotenone on respiration in pea cotyledon mitochondria   总被引:7,自引:7,他引:0       下载免费PDF全文
Respiration utilizing NAD-linked substrates in mitochondria isolated from cotyledons of etiolated peas (Pisum sativum L. var. Homesteader) by sucrose density gradient centrifugation exhibited resistance to rotenone. The inhibited rate of α-ketoglutarate oxidation was equivalent to the recovered rate of malate oxidation. (The recovered rate is the rate following the transient inhibition by rotenone.) The inhibitory effect of rotenone on malate oxidation increased with increasing respiratory control ratios as the mitochondria developed. The cyanide-resistant and rotenone-resistant pathways followed different courses of development as cotyledons aged. The rotenone-resistant pathway transferred reducing equivalents to the cyanide-sensitive pathway. Malic enzyme was found to be inhibited competitively with respect to NAD by rotenone concentrations as low as 1.67 micromolar. In pea cotyledon mitochondria, rotenone was transformed into elliptone. This reduced its inhibitory effect on intact mitochondria. Malate dehydrogenase was not affected by rotenone or elliptone. However, elliptone inhibited malic enzyme to the same extent that rotenone did when NAD was the cofactor. The products of malate oxidation reflected the interaction between malic enzyme and malate dehydrogenase. Rotenone also inhibited the NADH dehydrogenase associated with malate dehydrogenase. Thus, rotenone seemed to exert its inhibitory effect on two enzymes of the electron transport chain of pea cotyledon mitochondria.  相似文献   

20.
Malate has a number of key roles in the brain, including its function as a tricarboxylic acid (TCA) cycle intermediate, and as a participant in the malate-aspartate shuttle. In addition, malate is converted to pyruvate and CO2 via malic enzyme and may participate in metabolic trafficking between astrocytes and neurons. We have previously demonstrated that malate is metabolized in at least two compartments of TCA cycle activity in astrocytes. Since malic enzyme contributes to the overall regulation of malate metabolism, we determined the activity and kinetics of the mitochondrial and cytosolic forms of this enzyme from cultured astrocytes. Malic enzyme activity measured at 37°C in the presence of 0.5 mM malate was 4.15±0.47 and 11.61±0.98 nmol/min/mg protein, in mitochondria and cytosol, respectively (mean±SEM, n=18–19). Malic enzyme activity was also measured in the presence of several endogenous compounds, which have been shown to alter intracellular malate metabolism in astrocytes, to determine if these compounds affected malic enzyme activity. Lactate inhibited cytosolic malic enzyme by a noncompetitive mechanism, but had no effect on the mitochondrial enzyme. -Ketoglutarate inhibited both cytosolic and mitochondrial malic enzymes by a partial noncompetitive mechanism. Citrate inhibited cytosolic malic enzyme competitively and inhibited mitochondrial malic enzyme noncompetitively at low concentrations of malate, but competitively at high concentrations of malate. Both glutamate and aspartate decreased the activity of mitochondrial malic enzyme, but also increased the affinity of the enzyme for malate. The results demonstrate that mitochondrial and cytosolic malic enzymes have different kinetic parameters and are regulated differently by endogenous compounds previously shown to alter malate metabolism in astrocytes. We propose that malic enzyme in brain has an important role in the complete oxidation of anaplerotic compounds for energy.These data were presented in part at the meeting of the American Society for Neurochemistry in Richmond, Virginia, March 1993  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号