首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A soluble phospholipase C from rat liver was purified to homogeneity using phosphatidylinositol 4,5-bisphosphate (PIP2) as substrate. After ammonium sulfate fractionation, the purification involved chromatography on phosphocellulose, DEAE-Sepharose CL-6B, hydroxylapatite, Reactive Blue 2 dye-linked agarose, and Mono S cation exchanger. Under the conditions of the assay, the pure enzyme had a specific activity of 407 mumol/mg protein/min. It migrated as a single band with a molecular mass of 87 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The water-soluble product formed during the hydrolysis of PIP2 by the purified enzyme was inositol 1,4,5-trisphosphate. The enzyme shows one-half of maximum velocity at 2 microM Ca2+ with PIP2 as substrate. Between 0 and 100 microM Ca2+, the enzyme shows approximately the same activity with phosphatidylinositol 4-phosphate (PIP) as it does with PIP2, and very low activity with phosphatidylinositol. The enzyme is activated by low concentrations of basic proteins; for example, with PIP2 as substrate, 1 microgram/ml histone activates the enzyme 3.6-fold. The enzyme shows an almost absolute requirement for monovalent salts which can be met by different alkali metal halides. A second, minor peak of PIP2-hydrolyzing phospholipase C activity was resolved during chromatography of the enzyme on hydroxylapatite. The substrate specificity suggests that PIP and PIP2 are normal substrates of this enzyme. Under physiological conditions of activation, the enzyme may therefore generate inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate in amounts determined by the ratio of PIP and PIP2 present in the cellular membranes.  相似文献   

2.
A phosphoinositide-specific phospholipase C activity was identified in oat root (Avena sativa, cv Victory) plasma membranes purified by separation in an aqueous two-phase polymer system. The enzyme is highly active toward inositol phospholipids but only minimally active toward phosphatidylethanolamine and phosphatidylcholine. Activity approaches maximal levels at 200 micromolar phosphatidylinositol 4-phosphate (PIP) and is highly dependent on calcium; it is inhibited by 1 millimolar EGTA and is activated by calcium with an apparent activation constant of 2 micromolar. At 10 micromolar calcium and 200 micromolar inositol phospholipid, the enzyme is specific for phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP, which are hydrolyzed at 10 and 4 times, respectively, the rate of phosphatidylinositol (PI) hydrolysis. The principle water soluble products of hydrolysis, as determined by high performance liquid chromatography, are inositol 1,4,5-trisphosphate from PIP2, inositol 1,4-bisphosphate from PIP, and inositol phosphate from PI.  相似文献   

3.
Phosphoinositides of human, rabbit, rat, and turkey erythrocytes were radiolabeled by incubation of intact cells with [32P]Pi. Guanosine 5'-O-(thiotriphosphate) (GTP gamma S) and NaF, which are known activators of guanine nucleotide regulatory proteins, caused a large increase in [32P]inositol phosphate release from plasma membranes derived from turkey erythrocytes, but had no effect on inositol phosphate formation by plasma membranes prepared from the mammalian erythrocytes. High performance liquid chromatography analysis indicated that inositol bisphosphate, inositol 1,3,4-trisphosphate, inositol 1,4,5-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate all increased by 20-30-fold during a 10-min incubation of turkey erythrocyte membranes with GTP gamma S. The increase in inositol phosphate formation was accompanied by a similar decrease in radioactivity in phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). GTP gamma S increased inositol phosphate formation with a K0.5 of 600 nM; guanosine 5'-(beta, gamma-imido)trisphosphate was 50-75% as efficacious as GTP gamma S and expressed a K0.5 of 36 microM. Although GTP alone had little effect on inositol phosphate formation, it blocked GTP gamma S-stimulated inositol phosphate formation, as did guanosine 5'-O-(2-thiodiphosphate). Turkey erythrocytes were also shown to express phosphatidylinositol synthetase activity in that incubation of cells with [3H] inositol resulted in incorporation of radiolabel into phosphatidylinositol, PIP, and PIP2. Incubation of membranes derived from [3H]inositol-labeled erythrocytes with GTP gamma S resulted in large increases in [3H] inositol phosphate formation and corresponding decreases in radiolabel in PIP and PIP2. The data suggest that, in contrast to mammalian erythrocytes, the turkey erythrocyte expresses a guanine nucleotide-binding protein that regulates phospholipase C, and as such, should provide a useful model system for furthering our understanding of hormonal regulation of this enzyme.  相似文献   

4.
The effect of various detergents on polyphosphoinositide-specific phospholipase C activity in highly purified wheat root plasma membrane vesicles was examined. The plasma membrane-bound enzyme was solubilized in octylglucoside and purified 25-fold by hydroxylapatite and ion-exchange chromatography. The purified enzyme catalyzed the hydrolysis of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) with specific activities of 5 and 10 mumol/min per mg protein, respectively. Phosphatidylinositol (PI) was not a substrate. Optimum activity was between pH 6-7 (PIP) and pH 6-6.5 (PIP2). The enzyme was dependent on micromolar concentrations of Ca2+ for activity, and millimolar Mg2+ further increased the activity. Other divalent cations (4 mM Ca2+, Mn2+ and Co2+) inhibited (PIP2 as substrate) or enhanced (PIP as substrate) phospholipase C activity.  相似文献   

5.
Two different methods were used to study directly alpha-thrombin modulation of polyphosphoinositide breakdown in membranes prepared from Chinese hamster lung (CHL) fibroblasts. In the first one we labelled the lipid pool by incubating the intact cells with myo-[3H]inositol prior to membrane isolation; in the other we used exogenous [3H]PIP2 with phosphatidylethanolamine (1:10) added as liposomes to freshly isolated membranes. A Ca2+-dependent PIP2 and PIP phospholipase C activity was characterized by measuring the rate of formation of inositol tris- and bisphosphate. Basal phospholipase C activity was stimulated up to 3-fold by GTP or GTP-gamma-S. Of the two mitogens, alpha-thrombin and EGF, known to stimulate DNA synthesis in Chinese hamster fibroblasts, only alpha-thrombin is a potent activator of PIP2 breakdown in intact cells. Consistent with this observation, alpha-thrombin but not EGF potentiated GTP-gamma-S-dependent phospholipase C activity in membrane preparations. These results strongly support the hypothesis that a GTP-binding protein couples alpha-thrombin receptor to PIP2 hydrolysis. Because both methods used to assay phospholipase C gave identical results, we conclude that the coupling is at the level of PIP2-phosphodiesterase activity.  相似文献   

6.
The biosynthesis of the functional, endogenous cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP) is performed by the plasma membrane-bound enzyme cyclic PIP synthase, which combines prostaglandin E (PGE) and activated inositol phosphate (n-IP) to cyclic PIP. The Km values of the enzyme for the substrates PGE and n-IP are in the micromolar range. The plasma membrane-bound synthase is activated by fluoride, by the stable GTP analog GMP-PNP, by protamine or biguanide, by noradrenaline, and by insulin. The activation by protamine or biguanide and fluoride (10 mM) is additive, which may indicate the presence of two different types of enzyme, comparable to phospholipase Cbeta and phospholipase Cgamma. Plasma membrane-bound cyclic PIP synthase is inhibited by the protein tyrosine kinase inhibitor tyrphostin B46 with an IC50 of 1.7 microM. However, the solubilized and gel-filtrated enzyme is no longer inhibited by tyrphostin, indicating that the activity of cyclic PIP synthase is connected with the activity of a membrane-bound protein tyrosine kinase. Cyclic PIP synthase activity of freshly prepared plasma membranes is unstable. Upon freezing and rethawing of liver plasma membranes, this instability is increased about 2-fold. Protein tyrosine phosphatase inhibitors [vanadate, fluoride (50-100 mM)] stabilize the enzyme activity, but protease inhibitors do not, indicating that inactivation of the enzyme is connected with protein tyrosine dephosphorylation. Cyclic PIP synthase is present in all tissues tested, like brain, heart, intestine, kidney, liver, lung, skeletal muscle, spleen, and testis. Apart from liver, cyclic PIP synthase activity in most tissues is rather low, but it can be increased up to 5-fold when protein tyrosine phosphatase inhibitors like vanadate are present in the homogenization buffer. Preincubation of cyclic PIP synthase of liver plasma membranes with the tyrosine kinase src kinase causes a 2-fold increase of cyclic PIP synthase activity, though this is certainly not the physiological role played by src kinase in intact cells. The data indicate that cyclic PIP synthase can be activated by two separate mechanisms: by a G protein or by protein tyrosine phosphorylation.  相似文献   

7.
For studies of phospholipase C (PLC) activity in cell-free systems, 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2) was prepared enzymatically by phosphorylating phosphatidylinositol 4-phosphate (PIP) in the presence of [gamma-32P]ATP using a PIP kinase partially purified from bovine retinae. PLC activity was determined by incubating membranes of DDT1 MF-2 cells with 32P-PIP2 and measuring remaining non-hydrolyzed substrate as well as accumulation of the hydrolysis product, inositol trisphosphate (IP3). Guanine nucleotides stimulated PIP2 hydrolysis and IP3 release. Additional increase in IP3 accumulation was observed with adrenaline plus guanine nucleotides.  相似文献   

8.
Two isozymes of phosphoinositide-specific phospholipase C were isolated and purified from salt-washed rabbit brain membranes. The membranes were extensively washed with isotonic, hypertonic and hypotonic buffers prior to solubilization with sodium cholate. Two isozymes (PLC-IV and PLC-beta m) were purified by a combination of DEAE-Sephacel, AH-Sepharose, heparin-Sepharose, AcA-34 gel filtration and mono-Q FPLC chromatographies. The major activity (PLC-beta m) was purified to homogeneity and had an estimated molecular weight of 155,000 on sodium-dodecyl sulfate-polyacrylamide gels (SDS-PAGE). This isozyme was immunologically identified as PLC-beta, an isozyme previously characterized in bovine brain cytosol and 2 M KCl membrane extracts. A second isozyme, PLC-IV, was immunologically distinct from PLC-beta and PLC-gamma and was purified to a stage where three protein bands (Mr 66,000, 61,000 and 54,000) on SDS-PAGE correlated with enzyme activity. The catalytic properties of the isozymes were studied and found to be very similar. The specific activities for PIP2 were greater than those obtained when PI was used. Both PLC-IV and PLC-beta m were Ca2(+)-dependent; near maximal stimulation for PI and PIP2 hydrolysis was observed at 0.5 microM free Ca2+. Sodium pyrophosphate and sodium fluoride stimulated phospholipase C activity of both isozymes. Polyclonal antibodies raised against PLC-beta m were able to inhibit carbachol and GTP gamma S stimulated phospholipase C activity in 2 M KCl washed rabbit cortical membranes. This suggests that in rabbit brain muscarinic cholinergic stimulation regulates PLC-beta m.  相似文献   

9.
Casein kinase I activity is present in cells as a cytosolic and a membrane-bound enzyme. Previously, the erythroid membrane-bound casein kinase I was shown to associate with purified integral membrane proteins; this association and protein kinase activity was regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) (Bazenet, C.E., Brockman, J.L., Lewis, D., Chan, C., and Anderson, R.A. (1990) J. Biol. Chem. 265, 7369-7376). Here we show that both the membrane-bound and the cytosolic casein kinase interact with native membranes and that this interaction is regulated by the membrane content of PIP2. On native membranes, casein kinase I activity is potently inhibited by small increases (10-20%) in the membrane content of either exogenously added or intrinsic PIP2. However, the majority of the intrinsic content of PIP2 in isolated membranes does not inhibit casein kinase, suggesting that this PIP2 is not accessible. Regulation of the casein kinases on membranes is sensitive to detergents and to chymotrypsin treatment of membranes.  相似文献   

10.
Yoshida S 《Plant physiology》1979,64(2):252-256
Freeze-thawing of microsome-enriched membranes from living bark tissues of black locust trees, especially those from less hardy tissues, caused a drastic increase in sensitivity to Ca2+ and a complete loss of the regulatory action of Mg2+ in membrane-bound phospholipase D activity with endogenous (membrane-bound) substrates. Also, the freeze-thaw cycle made phospholipase D in these membranes more resistant to digestion by proteases. Thus, the regulatory properties of the membrane-bound phospholipase D seem to be dependent on the nature of the membranes and on the interaction between the enzyme and membranes as well. The alteration of regulatory properties by freezing was protected by sucrose, at lower concentrations, and more effectively for membranes from hardy tissues than for membranes from less hardy tissue. Addition of partially purified soluble phospholipase D to the reaction system containing membranes caused only a slight stimulation of the degradation of endogenous phospholipids. Phospholipid degradation in vivo during freezing of less hardy tissue may be catalyzed mainly by the bound enzyme. Disintegration of the tonoplast, however, besides releasing soluble phospholipase D into the cytosol, would release organic acids (lowering the pH) and free Ca2+. Both factors would stimulate drastically the membrane-bound phospholipase D, causing degradation of membrane phospholipids.  相似文献   

11.
Turkey erythrocyte membranes possess a phospholipase C that is markedly activated by P2Y-purinergic receptor agonists and guanine nucleotides. Reconstitution of [3H]inositol-labeled turkey erythrocyte membranes with guanine nucleotide regulatory protein (G-protein) beta gamma subunits resulted in inhibition of both AlF-4-stimulated adenylate cyclase and AlF-4-stimulated phospholipase C activities. The apparent potency (K0.5 approximately 1 microgram or 20 pmol of beta gamma/mg of membrane protein) of beta gamma subunits for inhibition of each enzyme activity was similar and occurred with beta gamma purified by different methodologies from turkey erythrocyte, bovine brain, or human placenta membranes. In contrast to the effect on AlF-4-stimulated activity, the stimulatory effect on phospholipase C of the P2Y-purinergic receptor agonist 2-methylthioadenosine 5'-triphosphate in the presence of guanine nucleotides was potentiated by 50-100% in a concentration-dependent manner by reconstitution of beta gamma subunits. beta gamma subunits did not affect the K0.5 value of 2-methylthioadenosine 5'-triphosphate for the stimulation of phospholipase C activity. These results indicate that beta gamma subunits influence phospholipase C activity in a concentration range similar to that necessary for regulation of adenylate cyclase activity and suggest the involvement of a G-protein possessing an alpha beta gamma heterotrimeric structure in coupling hormone receptors to phospholipase C.  相似文献   

12.
Polymorphonuclear leukocytes (PMNs) activate phospholipase C via a guanine nucleotide regulatory (G) protein. Pretreatment of the PMNs with pertussis toxin (PT) or 4-beta-phorbol 12-myristate 13-acetate (PMA) inhibited chemoattractant-induced inositol trisphosphate generation. To determine the loci of inhibition by PT and PMA, G protein-mediated reactions in PMN plasma membranes were examined. Plasma membranes prepared from untreated and PMA-treated PMNs demonstrated equivalent ability of a GTP analogue to suppress high affinity binding of the chemoattractant-N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) to its receptor. The rate, but not the extent, of high affinity binding of GTP gamma[35S] to untreated PMN membranes was stimulated up to 2-fold by preincubation with 1 microM fMet-Leu-Phe. The ability of fMet-Leu-Phe to stimulate the rate of GTP gamma S binding was absent in membranes prepared from PT-treated PMNs, but remained intact in membranes from PMA-treated cells. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) via phospholipase C could be activated in untreated PMN membranes by either fMet-Leu-Phe plus GTP or GTP gamma S alone at low concentrations of Ca2+ (0.1-1 microM). Membranes prepared from PT-treated PMNs degraded PIP2 upon exposure to GTP gamma S, but not fMet-Leu-Phe plus GTP. In contrast, membranes prepared from phorbol ester-treated PMNs did not hydrolyze PIP2 when incubated with GTP gamma S. Treatment with PT or PMA did not affect the ability of 1 mM Ca2+ to activate PIP2 hydrolysis in PMN membranes, indicating that neither treatment directly inactivated phospholipase C. Therefore, PT appears to block coupling of the chemoattractant receptors to G protein activation, while phorbol esters disrupt coupling of the activated G protein to phospholipase C. The phorbol ester-mediated effect may mimic a negative feedback signal induced by protein kinase C activation by diacylglycerol generated upon activation of phospholipase C.  相似文献   

13.
A polyphosphoinositide phospholipase C has been identified in highly purified plasma membranes from shoots and roots of wheat seedlings. The enzyme preferentially hydrolysed phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate and had a different phosphoinositide substrate profile from soluble phospholipase C. The enzyme activity was lower in plasma membranes isolated from light-grown shoots than from dark-grown ones, whereas no differences in activity between plasma membranes from light- and dark-grown roots were seen. Maximum activity of the membrane-bound enzyme was observed around pH 6. It was activated by micromolar concentrations of Ca2+, but not by GTP or GTP analogues. The enzyme may participate in signal transduction over the plant plasma membrane.  相似文献   

14.
The effect of various detergents on polyphosphoinositide-specific phospholipase C activity in highly purified wheat root plasma membrane vesicles was examined. The plasma membrane-bound enzyme was solubilized in octylglucoside and purified 25-fold by hydroxylapatite and ion-exchange chromatography. The purified enzyme catalyzed the hydrolysis of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) with specific activities of 5 and 10 μmol/min per mg protein, respectively. Phosphatidylinositol (PI) was not a substrate. Optimum activity was between pH 6–7 (PIP) and pH 6–6.5 (PIP2). The enzyme was dependent on micromolar concentrations of Ca2+ for activity, and millimolar Mg2+ further increased the activity. Other divalent cations (4 mM Ca2+, Mn2+ and Co2+) inhibited (PIP2 as substrate) or enhanced (PIP as substrate) phospholipase C activity.  相似文献   

15.
A guanine nucleotide-dependent P2Y-purinergic receptor-regulated phospholipase C activity of turkey erythrocyte membranes has been characterized in detail previously (Boyer, J. L., Downes, C. P., and Harden, T. K. (1989) J. Biol. Chem. 264, 884-890). The occurrence of agonist-induced desensitization of this receptor-regulated phospholipase C is now described. Preincubation of turkey erythrocytes with the P2Y-purinergic receptor agonist ADP beta S resulted in a marked loss of capacity of ADP beta S plus GTP to stimulate phospholipase C in membranes derived from these cells. The half-time of occurrence of desensitization was 0.5-2.0 min, and within 10 min responsiveness had reached a new quasi-steady state level representing 40-55% of control. Transfer of agonist-preincubated erythrocytes to agonist-free medium resulted in recovery of agonist plus GTP responsiveness of the membrane phospholipase C activity to control levels with a half-time of 10-20 min. The change in ADP beta S plus GTP responsiveness occurred as a loss of maximal effect with little or no change in the apparent affinity of agonist for stimulation of inositol phosphate production. Induction of desensitization occurred with an agonist-specificity that followed that expected of a P2Y-purinergic receptor. Neither the rate of activation nor the final phospholipase C activity attained in the presence of GTP gamma S alone was altered in membranes from cells preincubated with ADP beta S for 15 min. AlF-4-stimulated inositol phosphate production was also not modified in membranes from agonist-preincubated erythrocytes. In contrast, the capacity of ADP beta S to increase the rate of activation of phospholipase C by GTP gamma S was markedly reduced in membranes from agonist-preincubated cells. The amount of 3H-radioactivity in phosphoinositides, as well as the ratio of labeling among the phosphoinositides, was not altered by incubation of erythrocytes with a P2Y-purinergic receptor agonist. Taken together these data suggest that P2Y-purinergic receptor agonist-induced desensitization occurs as a consequence of a modification at the level of the receptor or at the level of receptor-guanine nucleotide regulatory protein (G-protein) coupling with no change occurring in the capacity of the G-protein to activate phospholipase C.  相似文献   

16.
Human platelet plasma membranes incubated in the presence of [gamma-32P]ATP and 15 mM MgCl2 incorporated radioactivity mostly into phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP), which represented together over 90% of the total lipid radioactivity. After washing, reincubation of prelabelled membranes revealed some hydrolysis of the two compounds by phosphomonoesterase(s), as detected by the release of radioactive inorganic phosphate (Pi) from the two phospholipids. This degradation attained 40%/30 min for PIP in the presence of 2 mM calcium and cytosol. The effect of calcium was observed at concentrations equal to or greater than 10(-4) M. In no case did calcium alone facilitate the formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). In contrast, simultaneous addition of 2 mM calcium and 2 mg/ml sodium deoxycholate promoted the formation of IP3 and IP2, indicating phosphodiesteratic cleavage of PIP2 and PIP. Phospholipase C activity was detected at calcium concentrations as low as 10(-7) M, in which case PIP2 hydrolysis was slightly more pronounced compared to PIP. Addition of cytosol increased to some extent the phospholipase C activity, suggesting that the low amount of enzyme remaining in the membrane is sufficient to promote submaximal degradation of PIP2 and PIP. We conclude that platelet polyphosphoinositides are present in the plasma membrane in a state where they remain inaccessible to phospholipase C, which is still fully active even at basal calcium concentrations, i.e., 10(-7) M. These results support the view that phosphodiesteratic cleavage of PIP2 promotes and thus precedes calcium mobilization brought about by IP3. The in vitro model presented here may prove very useful in future studies dealing with the mechanism rendering polyphosphoinositides accessible to phospholipase C attack upon agonist-receptor binding.  相似文献   

17.
N Banik  U Ganguly 《FEBS letters》1988,236(2):489-492
Rat intestinal epithelial cells were labelled with [32P]Pi and extracted, and the phospholipids were analysed by thin-layer chromatography. 32P-incorporation in phosphatidylinositol (PI) and phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-phosphate (PIP2) were measured in control and heat stable enterotoxin (ST)-treated cells. ST was found to induce rapid degradation of PIP and PIP2. The degradation of inositol lipids was accompanied by an increase of water soluble inositol phosphate (IP1, IP2, IP3) compounds. There was a two-fold increase of radioactivity in IP2 and IP3 but no significant change was observed in IP1. Phospholipase C activity was increased tenfold with substrate PIP2 in ST-pretreated cells. The present study indicates that ST triggers another second messenger system by increasing the PIP2 hydrolysis with the enzyme phospholipase C.  相似文献   

18.
Leukocyte activation by chemoattractants provides an important model to study the biochemical mechanisms of stimulus-response coupling in these cells. Well-defined chemotactic factors induce readily quantifiable responses in phagocytic leukocytes. These include directed migration and the production and release of toxic substances including oxygen radicals and lysosomal enzymes. The development of radiolabeled synthetic oligopeptides with potent chemotactic activity allowed the demonstration of chemoattractant receptors on polymorphonuclear leukocytes (PMNs) as well as macrophages. In membrane preparations from these cells, these receptors exist in high- and low-affinity states which are regulated by guanosine di- and triphosphates. This suggested that chemoattractant receptors interact with guanine nucleotide regulatory proteins (N or G proteins). Although chemoattractants elicit a rapid but transient increase in intracellular cAMP levels, they neither stimulate nor inhibit membrane-bound adenylate cyclase, suggesting a novel role for N proteins in certain receptor-transduction mechanisms. Stimulation of phagocytes by chemoattractants is also associated with a rapid increase in cytosolic Ca2+ concentrations ([ Ca2+]i) which appears to result from the production of inositol 1,4,5-triphosphate (IP3) as a consequence of the diesteric cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2). Treatment of phagocytes with pertussis toxin (PT), which ADP-ribosylates and thereby inactivates certain N proteins, abolishes the cells' responsiveness to chemoattractants. More direct evidence for a role of a PT-sensitive N protein in leukocyte activation was provided by the demonstration that chemoattractants stimulate the hydrolysis of PIP2 in PMN membranes only in the presence of GTP. This receptor-mediated hydrolysis of PIP2 is not observed in plasma membranes prepared from PT-treated PMNs. Therefore, these studies suggest that occupancy of chemoattractant receptors activates a PT-sensitive N protein. The activated N protein shifts the Ca2+ requirement for phospholipase C activity from supraphysiological levels to ambient cytosolic Ca2+ concentrations. Cleavage of PIP2 results in the formation of the second messenger molecules, IP3 and 1,2-diacylglycerol, which can initiate cellular activation. These messengers also seem to activate responses which feed back to attenuate receptor stimulation of phospholipase.  相似文献   

19.
R Graber  G A Losa 《Enzyme》1989,41(1):17-26
Peripheral blood mononuclear cells from normal donors exhibited phosphatidylinositol 4,5-bisphosphate phospholipase C (PIP2-PLC), inositol 1,4,5-trisphosphate (IP3) and inositol 1-phosphate (IP)-monophosphatase activities which were mostly recovered in the cytosol fraction. In both cytosol and particulate fractions PIP2-PLC displayed the highest activity at pH 6.2, whereas IP3 and IP-monophosphatases showed the same optimal pH at 7.0. While the PIP2-PLC displayed close apparent Km values in cytosol and particulate fractions, both inositol-monophosphatases were found to show substrate affinities for IP and IP3 characteristic of these two fractions, with an higher affinity in the soluble fraction.  相似文献   

20.
5'-Nucleotidase was purified greater than 1000-fold from human placenta by treatment of plasma membranes with S. aureus phosphatidylinositol-specific phospholipase C and affinity chromatography on Con A Sepharose and AMP-Sepharose. The resulting enzyme had a specific activity of greater than 5000 mumol/hr/mg protein and a subunit molecular weight of 73,000. Goat antibodies against 5'-nucleotidase inhibited enzyme activity and detected 5'-nucleotidase after Western blotting. These antibodies also recognized a soluble form of 5'-nucleotidase and residual membrane-bound 5'-nucleotidase which could not be released by phosphatidylinositol-specific phospholipase C treatment, suggesting that the three forms of the enzyme are structurally related. The soluble 5'-nucleotidase may be derived from the membrane-bound form by the action of an endogenous phospholipase C. The structural basis for the inability of some of the membrane-bound 5'-nucleotidase to be released by phosphatidylinositol-specific phospholipase C is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号