首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— [1-14C]Arachidonic acid was incorporated into brain lipids with a half-life of approx. 5 min. Within 40 min after intra-cerebral injection, radioactivity was distributed mainly among the diacyl-sn-glycero-3-phosphorylcholine (45 per cent), diacyl-sn-glycero-3-phosphorylinositol (22 per cent), diacyl-sn-glycero-3-phosphorylethanolamine (14 per cent) and triacylglycerols (9 per cent). At comparable times, the proportions of radioactivity distributed in diacyl-sn-glycero-3-phosphorylserines and alkenylacyl-sn-glycero-3-phosphorylethanolamines were relatively small. Radioactivity was initially incorporated into the phosphatidio acids and diacylglycerols before labelling of the triacylglycerols and other phosphogly-cerides. The relative specific activity of diacylglycerols was maximum between 3–6 min after injection. Due to the small level of diacyl-sn-3-phosphorylinositol present in brain, its relative specific radioactivity was higher than other types of brain phosphoglycerides. Results of the experiment thus indicate that labelled arachidonic acid is an excellent precursor for metabolic studies with regard to acyl groups present in the 2-position of the phosphoglyceride molecules. Furthermore, this labelled precursor is specially useful in studies related to metabolism of diacyl-sn-glycero-3-phosphorylinositol in brain.  相似文献   

2.
Subcellular fractionation of human brain cortex obtained at autopsy yielded microsomal and synaptosome-rich fractions from the gray matter and microsomal and purified myelin fractions from the white matter. The phospholipids of myelin were high in plasmalogens, and the molar ratio of alkenyl acyl sn-glycero-3-phosphorylethanolamine to diacyl sn-glycero-3-phosphorylethanolamine was 4. The acyl groups of the myelin phosphoglycerides were enriched in monoenes (mainly 18:1 and 20:1) and a tetraene, 22:4(n - 6). The phospholipids in the synaptosome-rich fraction were high in diacyl sn-glycero-3-phosphorylcholine, and the molar ratio of the alkenyl acyl sn-glycero-3-phosphorylethanolamine to diacyl sn-glycero-3-phosphorylethanolamine was 0.88. The acyl groups of synaptosomal ethanolamine phosphoglycerides were rich in 22:6(n - 3) but contained a very low amount of 20:1. The lipid composition of microsomes from the gray matter was different from that of microsomes from the white matter but was nearly identical with that of the synaptosome-rich fraction. Except for a slightly lower proportion of alkenyl acyl sn-glycero-3-phosphorylethanolamine and sphingomyelin, the lipid composition of microsomes from the white matter was also similar to that of the myelin. There were also species-related differences between the brain lipid composition of human and subhuman primates and that of the rodents. Furthermore, the brain lipid composition in normal human subjects is rather constant and does not seem to be affected much by individual variations.  相似文献   

3.
Abstract— Three groups of six mice each were killed 1, 4 and 7 days after an intracerebral injection of [1,2-14C]ethanolamine. The specific radioactivities of the acid-labile ethanolamine phosphoglycerides (ethanolamine plasmalogens) and of the acid-stable ethanolamine phosphoglycerides (diacyl and alkyl acyl glycerophosphoryletholamines) from myelin and microsomal fractions were determined. All of these brain ethanolamine phosphoglycerides turn over rapidly with an apparent half-life of less than 3 days. The biosynthesis of alkenyl acyl glycerophosphorylethanolamines from diacyl glycerophosphorylethanolamines in mouse brain myelin or microsomes is unlikely.  相似文献   

4.
Abstract— Mouse brain subcellular fractions were prepared at 1, 12, and 24 h and 3 and 8 days after intracerebral injections of [1-14C]arachidonate. Initially, radioactivity was mainly distributed in the microsomal and synaptosomal fractions, but the proportion of radioactivity in the myelin increased from 5 to 16% within 8 days. Radioactivity of the microsomal lipids started to decline at 1 h after injection, and the decay was represented by two pools with half-lives of 19 h and 10 days, respectively. Radioactivity in the synaptosomal and myelin fractions did not reach a maximum until 24 h after injections. The half-life for turnover of synaptosomal lipids was 9 days.
The decline of radioactivity measured in the microsomal fraction was due mainly to diacyl-GPC and diacyl-GPI, since radioactivity of other phosphoglycerides (diacyl-GPS, diacyl-GPE and alkenyl-acyl-GPE) continued to increase for 12-24 h. In this fraction, half-lives of 10-14 h were obtained for the fast turnover pools of diacyl-GPC and diacyl-GPI, and slow turnover pools with half-lives of 7 days for diacyl-GPI and 10-14 days for other phosphoglycerides were also present. Among the synaptosomal phosphoglycerides, radioactivity of diacyl-GPI declined in a biphasic mode, thus exhibiting half-lives of 5 h and 5 days. Incorporation of labelled arachidonate into diacyl-GPE and diacyl-GPS in the synaptosomal fractions was observed for a period of 24 h. The half-lives for these phosphoglycerides ranged from 8 to 12 days. Results of the study have demonstrated the presence of small pools of arachidonoyl-GPI in synaptosomal and microsomal fractions which were metabolically more active than other arachidonoyl containing phosphoglycerides.  相似文献   

5.
—1,2-Diacyl-, 1-alk-1′-eny1-2-acyl- and 1-alky1-2-acyl-sn-glycero-3-phosphorylcholine specifically labelled with different fatty acids at the 2 position, were prepared enzymically using the acyltransferase system of rabbit sarcoplasmic reticulum. The substrates were submitted to hydrolysis by phospholipase A2 (phospholipid acyl-hydrolase, EC 3.1.1.4) obtained from normal and brain tissue affected with subacute sclerosing panencephalitis. In the diseased tissue an increase of phospholipase A2 activity ranging from 46 to 54% could be observed in comparison to the control brain for all substrates investigated. Among the investigated substrates phospholipase A2 had the highest affinity for the 1,2-diacylcompound, whereas alkenylacyl- and alkylacyl-sn-glycero-3-phosphorylcholine were cleaved at almost similar rates. The hydrolysis rate of choline-plasmalogen and the corresponding diacyl compound by the enzyme was greatly influenced by the fatty acid moiety located at the 2 position of the substrates.  相似文献   

6.
The phospholipids of cilia and deciliated bodies of Paramecium tetraurelia were isolated and characterized. 1-alkyl-2-acyl-sn-glycero-3-(2′-aminoethyl) phosphonate (GAEPL), phosphatidylethanolamine, and 1-alkyl-2-acyl-sn-glycero-3-phosphorylcholine (GPC) were the major lipids of Paramecium, and the minor lipids included phosphatidylinositol, cardiolipin, ceramide-(2-aminoethyl) phosphonate (CAEP), ceramide phosphorylethanolamine (COPE) and four sphingolipids whose identity was not established. The deciliated bodies contained 4% cardiolipin, 15% GAEPL, 41% phosphatidylethanolamine, 30% GPC and 3% each of CAEP and phosphatidylinositol; the cilia contained no cardiolipin, 24% GAEPL, 37% phosphatidylethanolamine, 15% GPC, 15% CAEP, 3% phosphatidylinositol, 2% COPE and small amounts (approx. 1%) of the four uncharacterized sphingolipids. No alteration in phospholipid composition was found among cells harvested in the various stages of growth. The phospholipids of six Paramecium mutants of three distinct phenotypes (pawn, paranoiac and fast) were also examined. Only one significant difference was found on comparison of the whole cell, deciliated body and cilia fraction of the mutants with the analogous fractions from wild type cells: the fast mutant, fA 97, had two extra, minor phospholipids (approx. 2%) in the deciliated body fraction that were tentatively identified as 1,2-diacyl-sn-glycero-3-(2′-aminoethyl) phosphonate (AEPL) and 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine (GPE).  相似文献   

7.
Primary cultures prepared from newborn rat brain, consisted after 16 or 17 days mainly of astrocytes and of oligodendrocytes. 1-Alkenyl-sn-glycero-3-phosphoethanolamine (lysoplasmalogen) was used as substrate for studies on the metabolism of ethanolamine-glycerophospholipids. After 3 hr incubation two main products were observed: a) 1-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine (=ethanolamine plasmalogen) and b) 1-alkenyl-2-acyl-sn-glycero-3-phosphocholine (=choline plasmalogen). The acylation rate reached saturation at about 10 nmol substrate/mg cell protein with aV max of 30 nmol×mg cell protein–1×3 hr–1. This acylated compound amounted to almost 60% of all radioactivity internalized, whereas the second product, choline plasmalogen, came to 20%. Unchanged substrate was found within the cells only in small amounts, even at maximum substrate internalization. These results were discussed in comparison with those obtained with 1-alkyl-sn-glycero-3-phosphoethanolamine under the same conditions (25).  相似文献   

8.
Abstract— Plasmalogenase was assayed by measuring the disappearance of the plasmalogen by two-dimensional thin-layer chromatography. The enzyme was present in a glycerol-bicarbonate extract of an acetone-dried powder from bovine brain. With ethanolamine plasmalogens as the substrate, the Km was 180 μM. Diacyl glycerophosphorylcholines, diacyl glycerophosphorylethanolamines and choline plasmalogens were competitive inhibitors. With choline plasmalogens as the substrate, the Km was 208 μM and competitive inhibition was observed with diacyl glycerophosphorylcholines and ethanolamine plasmalogens. The same enzyme may be responsible for the hydrolysis of the alk-1-enyl moiety from both plasmalogens. Plasmalogenase activity was 5.1 μmol/h/g of dog brain, 3.9 μmol/h/g of rat brain and 3.4 μmol/h/g of gerbil brain. A lysophospholipase was also found in the glycerol-bicarbonate extract from the acetone-dried powder. The lysophospholipase was more active in hydrolysing acyl groups from 2-acyl-sn-glycero-3-phosphorylethanolamines than the plasmalogenase was active in hydrolyzing alk-1-enyl groups from 1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphorylethanolamines.  相似文献   

9.
—1,2-Diacyl-, 1-alk-1′-enyl-2-acyl-and 1-alkyl-2-acyl-sn-glycero-3-phosphorylcholine, specifically labelled with different fatty acids at the 2 position, were prepared enzymically using the acyltransferase system of rabbit sarcoplasmic reticulum. The substrates were submitted to hydrolysis by mitochondrial phospholipase A2 (phosphatide acyl-hydrolase, EC 3.1.1.4) obtained from normal and from rat brain afflicted with EAE. In the acute stage of the disease an increase of approximately 25 per cent in phospholipase A 2 activity could be observed in comparison to that from the control animals for all investigated substrates. Phospholipase A2 obtained from normal rat brains and from those afflicted with EAE had a higher affinity for 1,2-diacyl-sn-glycero-3-phosphorylcholine when compared to the corresponding alkyl acyl- and alkenyl acyl-analogues. Choline plasmalogen was cleaved more slowly than the corresponding alkyl acyl derivative. The enzyme activity returned to the control level in the recovery stage of the demyelinating disease.  相似文献   

10.
2-Azido-2-deoxy-1-O-hexadecyl-sn-glycero-3-phosphorylcholine was prepared in good yield from D-mannitol via 3-O-hexadecyl-2-O-methanesulfonyl-1-O-triphenylmethyl-sn-glycerol. Nucleophilic displacement of the 2-methanesulfonate function by benzoate or azide ion proceeded with inversion of configuration (Sn2) without racemization. Hydrogenation of the azidophospholipid gave 2-amino-2-deoxy-1-O-hexadecyl-sn-glycero-3-phosphorylcholine which is a versatile intermediate for the preparation of amide analogs of platelet-activating factor and related derivatives. The synthesis of 2-deoxy-2-fluoro-1-O-hexadecyl-sn-glycero-3-phosphorylcholine was also described.  相似文献   

11.
Reaction of 1-fattyacyl-sn-glycero-3-phosphorylcholine with triphenylphosphine — carbon tetrachloride gave 3-fattyacyl-2-chloro-2-deoxy-sn-glycero-1-phosphorylcholine together with small amounts of other chlorodeoxy isomers. 1-Chloro-1-deoxy-2-palmitoyl-rac-glycero-3-phosphorylcholine was prepared by total synthesis from 3-chloro-2-iodopropyl palmitate. The main step in the synthesis involves the nucleophilic displacement of iodide at C-2 with dibenzyl phosphate anion, which proceeds with an acyloxy migration, leading to the key intermediate 1-chloro-1-deoxy-2-palmitoyl-rac-glycero-3-(dibenzyl phosphate). Hydrogenolysis of this phosphate triester, followed by esterification with choline acetate gave the final product. The properties of the products support an earlier conclusion that the so-called “cyclic lysolecithin” is a mixture of isomeric acyl-chloro-deoxy-glycero-phosphorylcholines in which 1-chloro-1-deoxy-2-acyl-glycero-3-phosphorylcholine is the major component.  相似文献   

12.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

13.
Abstract— Rat brain particulate fractions were shown to acylate [32P]1-alkyl- sn -glycero-3-phosphorylethanolamine (GPE). While the main product is 1-alkyl-2-acyl GPE, about 12 per cent of the radioactivity was also found in 1-alkenyl-2-acyl GPE. The acyl transferase activity was completely dependent on added ATP and CoA and it was localized mainly in the microsomal fraction. A comparative study of acyl transferase activities to 1-alkyl-, 1-alkenyl-, and 1-acyl GPE by crude mitochondrial fraction and microsomes of 10, 16 and 22-day-old rat brains showed a progressive increase in activity with development. In the 22-day-old rat brain the order of activity towards the three substrates is as follows: 1-acyl GPE ± 1-alkenyl GPE ± 1-alkyl GPE with a crude mitochondrial fraction and 1-acyl GPE ± 1-alkyl GPE ± 1-alkenyl GPE with microsomes.  相似文献   

14.
A study was conducted on the in vivo incorporation of l -[14C]-serine into the lipids and proteins of the various subcellular fractions of the developing rat brain before and during the stage of active myelination. The total radioactivity in the various fractions at 12 days of age was higher than that at 3 days, while the radioactive specific activity was reversed. The specific activities of the proteins and lipids were higher at 3 days of age with the exception of the subcellular fraction containing myelin. At both ages the lipids of the various cellular fractions had similar specific activities, a finding that suggests a common source for lipid biosynthesis. Incorporation of radioactivity into the various phospholipids was in the following order: phosphatidyl serine > phosphatidyl ethanolamine > phosphatidal serine > sphingomyelin and phosphatidyl choline. Of all the phospholipids, the plasmalogens increased most in total radioactivity during the period when meylination was most active. Serine-containing phospholipids appear to be most tightly bound to proteins. The brain mitochrondrial fraction contained most of the phosphatidyl serine decarboxylase activity with some activity in the nuclei. Biosynthesis of phosphatdyil ethanolamine through decarboxylation of phosphatidyl serine could take place in rat brain. Four unidentified radioactive metabolites were found in the acid-soluble fraction in addition to l -[14C]serine.  相似文献   

15.
The incorporation of palmitate into lipids by hamster lung subcellular fractions was examined and compared to the simultaneous incorporation of sn-glycero-3-phosphate. The rate of incorporation was greater for the microsomal fraction than for the mitochondria-rich fraction with very little incorporation by the supernatant. The supernatant, however, increased the rate of incorporation by 60–70% when added to the particulate fractions. The presence of CoA, ATP and rac-glycerophosphate in the incubation medium was required for optimal incorporation in all fractions. Comparison of incorporation of sn-glycero-3-phosphate and palmitate into lipids indicated that a great part of palmitate incorporation into 3-sn-phosphatidylcholine did not proceed via the diglyceride pathway. The highest de novo incorporation of palmitate was observed into 3-sn-phosphatidylethanolamine.  相似文献   

16.
Abstract— The possibility that axonally transported lipids and/or proteins might undergo transaxonal migration and become incorporated into surrounding myelin lamellae was studied by isolating myelin from optic tracts of myelinating rabbits at various times following intraocular injection of [3-14C]-serine and [2-3H]glycerol. Myelin isolated by a procedure employing ethylene glycol-bis(β-aminoethyl ether)-.N,N'-tetraacetic acid had relatively constant specific radioactivity with respect to both isotopes over a 21 day period. Myelin lipids showed a gradual increase in 14C specific radioactivity, attributed to reutilization of [14C]serine from the axon by a compartment of the oligodendrocyte. Free serine is postulated to arise in the axon from catabolism of axonally transported proteins (and possibly lipids) and to migrate transaxonally into the neighboring oligodendroglia. This reutilization mechanism resulted in synthesis of myelin cerebrosides, sphingomyelin, ethanolamine phosphoglycerides and possibly sulfatides, but not gangliosides or serine phosphoglycerides. The data for choline- and inositol-phosphoglycerides are inconclusive. [3H]Glycerol-labeled myelin lipids decreased slowly in 3H specific radioactivity with time, indicating either that [2-3H]glycerol does not participate in the reutilization pathway or that the label is lost in the process. Evidence is presented that 3H- and 14C-labeled lipids are true myelin constituents. Lipids from the myelin, axolemma- and axon-enriched fractions tended to converge in specific radioactivity over the 21 days, especially the former two fractions. These results together with isotope ratio changes point to an equilibration process whereby lipids are able to transfer. (or exchange) between the 3 compartments. Protein radioactivity in isolated myelin was suggested to arise from residual axon/axolemma contamination, and no evidence was found for transaxonal migration of protein into myelin. The 2 mechanisms elucidated here are believed to account for a quantitatively small portion of myelin lipid and are considered to represent a form of axon-glia interaction.  相似文献   

17.
In this review properties of lipid acetyltransferase enzymes are outlined. The three activities of interest are lyso PAF acetyltransferase (acetyl CoA: 1-alkyl-sn-glycero-3-phosphocholine acetyltransferase), AGP acetyltransferase (acetyl CoA: 1-alkyl sn-glycero-3-phosphate acetyltransferase) and a transacetylase activity that can transfer acetyl groups from PAF to lipid acceptors in the formation of 1-alkenyl-2-acetyl-sn-glycero-3-phosphoethanolamine and N-acetyl sphingosine (C2 ceramide). This review focuses on the role of acetyltransferases and transacetylases within the metabolism of platelet-activating factor and specifically addresses characteristics of the enzymes, including subcellular localization, substrate selectivity, and enzymatic regulation  相似文献   

18.
A method for quantitating glycerophosphorylcholine by flow injection analysis is reported in the present paper. Glycerophosphorylcholine phosphodiesterase and choline oxidase, immobilized on controlled porosity glass beads, are packed in a small reactor inserted in a flow injection manifold. When samples containing glycerophosphorylcholine are injected, glycerophosphorylcholine is hydrolyzed into choline and sn-glycerol-3-phosphate. The free choline produced in this reaction is oxidized to betain and hydrogen peroxide. Hydrogen peroxide is detected amperometrically.Quantitation of glycerophosphorylcholine in samples containing choline and phosphorylcholine is obtained inserting ahead of the reactor a small column packed with a mixed bed ion exchange resin. The time needed for each determination does not exceed one minute.The present method, applied to quantitate glycerophosphorylcholine in samples of seminal plasma, gave results comparable with those obtained using the standard enzymatic- spectrophotometric procedure.An alternative procedure, making use of co-immobilized glycerophosphorylcholine phosphodiesterase and glycerol-3-phosphate oxidase for quantitating glycerophosphorylcholine, glycerophosphorylethanolamine and glycerophosphorylserine is also described.Abbreviations GPC sn-glycerol-3-phosphorylcholine - GPE sn-glycerol-3-phosphorylethanolamine - GPS sn-glycerol-3-phosphorylserine - GPA sn-glycerol-3-phosphoric acid - PDE glycerophosphorylcholine-phosphodiesterase - GPA-Ox glycerophosphate oxidase - Cho-Ox choline oxidase  相似文献   

19.
Urethan-induced pulmonary adenomas of mice are composed of cells that appear to be morphologically identical to alveolar type II cells and synthesize disaturated diacyl-sn-glycero-3-phosphocholine, the major component of pulmonary surfactant. 1-[1-14C]Palmitoyl-sn-glycero-3-phosphocholine and [1-14C]palmitic acid were compared as precursors of disaturated diacyl-sn-glycero-3-phosphocholine in the adenoma type II cells by incubating both substrates with whole adenomas. When the precursors were compared at equal concentrations (100 μm) in the presence of albumin (1 mg/ml), the rates of incorporation of 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine and [1-14C]palmitic acid into diacyl-sn-glycero-3-phosphocholine were 5.2 and 2.9 nmol/min · g tissue, respectively. The concentration of monoacyl-sn-glycero-3-phosphocholine (lysolecithin) in the blood plasma of BALB/c mice was 150 μm. In short-term labeling experiments, the label in disaturated diacyl-sn-glycero-3-phosphocholine was equally distributed between the sn-1 and sn-2 positions when 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine was the precursor, whereas 75 to 80% was in the sn-2 position when [1-14C]palmitic acid was the precursor. The ratios are consistent with incorporation of 1-palmitoyl-sn-glycero-3-phosphocholine via the lysolecithin:lysolecithin transacylase reaction and incorporation of palmitate via acylation of 1-palmitoyl-sn-glycero-3-phosphocholine by acyl-CoA:lysolecithin acyltransferase. 1-[1-14C]Palmitoyl-sn-glycero-3-phospho-[3H-methyl]choline was incorporated into total cellular diacyl-sn-glycero-3-phosphocholine with an isotope ratio similar to that of the precursor; the disaturated species was more enriched in 14C. These findings indicate the cells take up intact monoacyl-sn-glycero-3-phosphocholine and incorporate it into diacyl-sn-glycero-3-phosphocholine. The ability of the cells to utilize intact lysophosphoglycerides for synthesis of cellular lipids was further demonstrated by showing that ether analogs, 1-alkyl-sn-glycero-3-phosphocholine and 1-alkyl-sn-glycero-3-phosphoethanolamine, are taken up and acylated by the cells. Activities of lysolecithin:lysolecithin transacylase and acyl-CoA:lysolecithin acyltransferase were measured in subcellular fractions of the adenoma type II cells; the specific activities of the enzymes were 2.1 nmol/min · mg soluble protein and 21 nmol/min · mg microsomal protein, respectively. The total activity of the acyltransferase in the cell fractions was about four-fold higher than the activity of the transacylase. Characteristics of the two enzymes were studied and are discussed. The findings indicate that exogenous 1-palmitoyl-sn-glycero-3-phosphocholine and palmitic acid both serve as efficient precursors of disaturated diacyl-sn-glycero-3-phosphocholine in the adenoma alveolar type II cells.  相似文献   

20.
The total chemical synthesis of di and tri-radioisotopically labelled 1–2 dipalmitoyl-sn-glycero-3-phosphorylethanolamine (PE) labelled with 14C-(diacyl) and 32P and 14C-(diacyl), 32P and 3H-(ethanolamine) are described. Due to the short half-life of the 32P isotope in the time consuming synthesis of the intramolecularly tri-labelled compound, 32P activity would be considerably low in relation to 14C and 3H at the end of such a synthesis. It was therefore decided to separately build three identical molecular species, individually labelled with 32P, 14C and 3H and mix these in appropriate quantities to obtain a tri-intermolecularly labelled mixture which would be chemically and biologically indistinguishable from the tri-intramolecularly labelled PE. Synthesis of a dilinoleoyl, a mixed acid Pe and a 14C, 32P lecithin are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号