首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Summary The effect of methanol on the ability of several strains of Aspergillus to produce citric acid from galactose has been investigated. In the absence of methanol, very little production (less than 1 g/l) was observed. In the presence of methanol (final concentration 1% v/v), however, citric acid production and yeilds were increased considerably. Strong relationships were observed between citric acid production and the activities of the enzymes 2-oxoglutarate dehydrogenase and pyruvate carboxylase in cell-free extracts. During citric acid production, in the presence of methanol, the activity of 2-oxoglutarate dehydrogenase was low and that of pyruvate carboxylase high. In the absence of methanol, where little citric acid was produced, the reverse was true. It is suggested that the presence of methanol may increase the permeability of the cell to citrate, and the cell responds to the diminished intracellular level by increasing production via repression of 2-oxoglutarate dehydrogenase.  相似文献   

2.
Summary Previous work in this laboratory has demonstrated that although Aspergillus niger can readily utilize galactose, no citric acid is produced from this carbon source (Hossain et al. 1984). Experiments were now conducted where galactose was added at various concentrations to synthetic growth medium containing glucose as carbon source, so that the effect of galactose on citric acid production from glucose could be observed. The results showed that the presence of galactose or a product of galactose metabolism caused inhibition of citric acid production, and also reduced the rate of glucose utilization. Enzyme analyses using mycelial cell-free extracts indicated that galactose interfered with the glucose-repression of the key enzyme 2-oxoglutarate dehydrogenase.  相似文献   

3.
The kinetics of substrate uptake and product formation in the process of citric acid accumulation by Aspergillus niger on sucrose as a sole carbon source are presented. The experiments are aimed at studying if glucose and fructose obtained from the hydrolysis of sucrose are equivalent carbon sources for A. niger and how the presence of the two different carbon substrates might influence the citric acid formation process. Beet sugar was used as a sole carbon source in the first series of experiments conducted in two types of bioreactors: stirred tank and air-lift. The fructose uptake rate was significantly lower than the glucose uptake rate in the late idiophase. A substrate utilisation breakpoint occurred when a large amount of citric acid was accumulated in the fermentation broth. A similar phenomenon was also detected in repeated fed-batch fermentation. This phenomenon was confirmed by the second series of parallel shake culture runs, in which fungal growth and citric acid accumulation by A. niger was simultaneously tested on the media containing the following carbon sources: sucrose, glucose and fructose, with and without addition of concentrated citric acid solution. Finally, it was shown that high concentration of citric acid strongly depleted fructose uptake rate.  相似文献   

4.
Succinic acid (SA) is an important platform molecule in the synthesis of a number of commodity and specialty chemicals. In the present work, dual-phase batch fermentations with the E. coli strain AFP184 were performed using a medium suited for large-scale industrial production of SA. The ability of the strain to ferment different sugars was investigated. The sugars studied were sucrose, glucose, fructose, xylose, and equal mixtures of glucose and fructose and glucose and xylose at a total initial sugar concentration of 100 g L-1. AFP184 was able to utilize all sugars and sugar combinations except sucrose for biomass generation and succinate production. For sucrose as a substrate no succinic acid was produced and none of the sucrose was metabolized. The succinic acid yield from glucose (0.83 g succinic acid per gram glucose consumed anaerobically) was higher than the yield from fructose (0.66 g g-1). When using xylose as a carbon source, a yield of 0.50 g g-1 was obtained. In the mixed-sugar fermentations no catabolite repression was detected. Mixtures of glucose and xylose resulted in higher yields (0.60 g g-1) than use of xylose alone. Fermenting glucose mixed with fructose gave a lower yield (0.58 g g-1) than fructose used as the sole carbon source. The reason is an increased pyruvate production. The pyruvate concentration decreased later in the fermentation. Final succinic acid concentrations were in the range of 25-40 g L-1. Acetic and pyruvic acid were the only other products detected and accumulated to concentrations of 2.7-6.7 and 0-2.7 g L-1. Production of succinic acid decreased when organic acid concentrations reached approximately 30 g L-1. This study demonstrates that E. coli strain AFP184 is able to produce succinic acid in a low cost medium from a variety of sugars with only small amounts of byproducts formed.  相似文献   

5.
In Euglena gracilis, pyruvate:NADP+ oxidoreductase, in addition to the pyruvate dehydrogenase complex, functions for the oxidative decarboxylation of pyruvate in the mitochondria. Furthermore, the 2-oxoglutarate dehydrogenase complex is absent, and instead 2-oxoglutarate decarboxylase is found in the mitochondria. To elucidate the central carbon and energy metabolisms in Euglena under aerobic and anaerobic conditions, physiological significances of these enzymes involved in 2-oxoacid metabolism were examined by gene silencing experiments. The pyruvate dehydrogenase complex was indispensable for aerobic cell growth in a glucose medium, although its activity was less than 1% of that of pyruvate:NADP+ oxidoreductase. In contrast, pyruvate:NADP+ oxidoreductase was only involved in the anaerobic energy metabolism (wax ester fermentation). Aerobic cell growth was almost completely suppressed when the 2-oxoglutarate decarboxylase gene was silenced, suggesting that the tricarboxylic acid cycle is modified in Euglena and 2-oxoglutarate decarboxylase takes the place of the 2-oxoglutarate dehydrogenase complex in the aerobic respiratory metabolism.  相似文献   

6.
Kojic acid production byAspergillus flavus strain S44-1 using sucrose as a carbon source was carried out in a 250-mL shake flask and a 2-L stirred tank fermenter. For comparison, production of kojic acid using glucose, fructose and its mixture was also carried out. Kojic acid production in shake flask fermentation was 25.8 g/L using glucose as the sole carbon source, 23.6 g/L with sucrose, and 6.4 g/L from fructose. Reduced kojic acid production (13.5 g/L) was observed when a combination of glucose and fructose was used as a carbon source. The highest production of kojic acid (40.2 g/L) was obtained from 150 g/L sucrose in a 2 L fermenter, while the lowest kojic acid production (10.3 g/L) was seen in fermentation using fructose as the sole carbon source. The experimental data from batch fermentation and resuspended cell system was analysed in order to form the basis for a kinetic model of the process. An unstructured model based on logistic and Luedeking-Piret equations was found suitable to describe the growth, substrate consumption, and efficiency of kojic acid production byA. flavus in batch fermentation using sucrose. From this model, it was found that kojic acid production byA. flavus was not a growth-associated process. Fermentation without pH control (from an initial culture pH of 3.0) showed higher kojic acid production than single-phase pH-controlled fermentation (pH 2.5, 2.75, and 3.0).  相似文献   

7.
Monomorphic bloodstream forms of Trypanosoma brucei, grown in the mammal, are deficient in aconitase and 2-oxoglutarate dehydrogenase and they do not respire in the presence of the substrates citrate, cis-aconitate, succinate, proline or 2-oxoglutarate. When grown in vitro low levels of aconitase, succinate oxidase and proline oxidase are detected. Addition of citrate/cis-aconitate at 37 degrees C to bloodstream forms leads to the formation of aconitase and proline oxidase. Most cells undergo an 'abortive' transformation to non-dividing procyclic-like cells while some cells adapt to the presence of the citric acid cycle intermediates and continue to multiply as bloodstream forms. At 27 degrees C and in the presence of citrate/cis-aconitate bloodstream forms transform synchronously to dividing procyclic cells. Within 72 h the rate of respiration with proline, succinate and 2-oxoglutarate becomes similar to that in established procyclic cells while the rate of glucose oxidation decreases. The possible role of citric acid cycle intermediates in determining whether a trypanosome will retain the properties of a bloodstream trypomastigote or differentiate to a procyclic trypomastigote is discussed.  相似文献   

8.
研究了不同碳源对Candidaglycerinogenes的菌体生长、发酵液pH值及代谢产物的影响,结果发现以葡萄糖、果糖等单糖为碳源时茵体生长较快,最终生物量比以蔗糖、麦芽糖等二糖为碳源时高20%~30%;导致发酵前12h发酵液pH值明显下降的主要因素是乳酸;与葡萄糖为碳源转化为甘油相比,果糖为碳源时更易累积乙醇;以蔗糖、麦芽糖为碳源时,用于转化生成甘油的碳源明显降低,碳源主要用于茵体自身生物合成及HMP途径,以蔗糖为碳源时,用于乳酸、丙酸及柠檬酸生物合成的碳源较麦芽糖明显提高,TCA途径代谢较为活跃。  相似文献   

9.
Summary The influence of various carbon sources and their concentration on the production of citrate by Aspergillus niger has been investigated. The sugars maltose, sucrose, glucose, mannose and fructose (in the given order) were carbon sources giving high yields of citric acid. Optimal yields were observed at sugar concentrations of 10% (w/v), with the exception of glucose (7.5%). No citric acid was produced on media containing less than 2.5% sugar. Precultivation of A. niger on 1% sucrose and transference to a 14% concentration of various other sugars induced citrate accumulation. This could be blocked by the addition of cycloheximide, an inhibitor of de novo protein synthesis. This induction was achieved using maltose, sucrose, glucose, mannose and fructose, and also by some other carbon sources (e.g. glycerol) that gave no citric acid accumulation in direct fermentation. Precultivation of A. niger at high (14%) sucrose concentrations and subsequent transfer to the same concentrations of various other carbohydrates, normally not leading to citric acid production, led to formation of citrate. Endogenous carbon sources were also converted to citrate under these conditions. A 14%-sucrose precultivated mycelium continued producing some citrate upon transfer to 1% sugar. These results indicate that high concentrations of certain carbon sources are required for high citrate yields, because they induce the appropriate metabolic imbalance required for acidogenesis.  相似文献   

10.
The rate of flux through pyruvate kinase in isolated rat hepatocytes has been estimated by a new procedure involving direct spectrophotometric measurement of pyruvate production by liver cells suspended in an oxygenated medium containing lactate dehydrogenase and NADH. For the substrates, glucose, dihydroxyacetone, fructose, propionate and galactose only the rate of pyruvate production from glucose and galactose was inhibited by the addition of 1 μM-glucagon. These results imply that glucagon mediates glycolytic flux at a point in the pathway preceding the point of entry of fructose and dihydroxyacetone and not at pyruvate kinase.  相似文献   

11.
在厌氧条件下, Actinobacillus succinogenes能够利用单糖、双糖和糖醇等碳水化合物发酵生成丁二酸, 其中以山梨醇为碳源时丁二酸的产量最高。代谢流量分析结果表明: 与葡萄糖发酵相比较, 由于代谢系统中积累了更多的NADH, 使得代谢网络关键节点PYR和AcCoA处的代谢流量分配有了较大的变化, 导致更多的碳源流向丁二酸和乙醇, 而乙酸和甲酸的分泌相对减少。  相似文献   

12.
Contrary to general concepts of bacterial saccharide metabolism, melibiose (25 to 32 g/liter) and fructose (5 to 14 g/liter) accumulated as extracellular intermediates during the catabolism of raffinose (O-alpha-D-galactopyranosyl-1, 6-alpha-D-glucopyranosyl-beta-D-fructofuranoside) (90 g/liter) by ethanologenic recombinants of Escherichia coli B, Klebsiella oxytoca M5A1, and Erwinia chrysanthemi EC16. Both hydrolysis products (melibiose and fructose) were subsequently transported and further metabolized by all three organisms. Raffinose catabolism was initiated by beta-fructosidase; melibiose was subsequently hydrolyzed to galactose and glucose by alpha-galactosidase. Glucose and fructose were completely metabolized by all three organisms, but galactose accumulated in the fermentation broth with EC16(pLOI555) and P2. MM2 (a raffinose-positive E. coli mutant) was the most effective biocatalyst for ethanol production (38 g/liter) from raffinose. All organisms rapidly fermented sucrose (90 g/liter) to ethanol (48 g/liter) at more than 90% of the theoretical yield. During sucrose catabolism, both hydrolysis products (glucose and fructose) were metabolized concurrently by EC16(pLOI555) and P2 without sugar leakage. However, fructose accumulated extracellularly (27 to 28 g/liter) at early stages of fermentation with KO11 and MM2. Sequential utilization of glucose and fructose correlated with a diauxie in base utilization (pH maintenance). The mechanism of sugar escape remains unknown but may involve downhill leakage via permease which transports precursor saccharides or novel sugar export proteins. If sugar escape occurs in nature with wild organisms, it could facilitate the development of complex bacterial communities which are based on the sequence of saccharide catabolism and the hierarchy of sugar utilization.  相似文献   

13.
The most efficient substrate for mannitol production by Candida magnoliae HH-01 is fructose; glucose and sucrose can also be converted into mannitol but with lower conversion yields. Mannitol dehydrogenase was purified and characterized; it had the highest activity with fructose as the substrate and used only NADPH. In fed-batch fermentation with glucose, the production of mannitol from fructose ceased when the glucose was exhausted but it was reinitiated with the addition of glucose, implying that glucose plays an important role in NADPH regeneration.  相似文献   

14.
15.
Streptococcus mutans JC2 produced formate, acetate, ethanol, and lactate when suspensions were incubated with an excess of galactose or mannitol under strictly anaerobic conditions. The galactose- or mannitol-grown cell suspensions produced more formate, acetate, and ethanol than the glucose-grown cells even when incubated with glucose. The levels of lactate dehydrogenase and fructose 1,6-bisphosphate were not significantly different in these cells, but the level of pyruvate formate-lyase was higher in the galactose- or mannitol-grown cells, and that of triose phosphate was lower in the galactose-grown cells. This suggests that the regulation of pyruvate formate-lyase may play a major role in the change of the fermentation patterns. The cells of S. mutans grown on glucose produced a significant amount of volatile products even in the presence of excess glucose under strictly anaerobic conditions. However, when the anaerobically grown cells were exposed to air, only lactate was produced from glucose. When cells were anaerobically grown on mannitol and then exposed to air for 2 min, only trace amounts of fermentation products were formed from mannitol under anaerobic conditions. It was found that the pyruvate formate-lyase in the cells was inactivated by exposure of the cells to air.  相似文献   

16.
1. Aerobically grown yeast having a high activity of glyoxylate-cycle, citric acid-cycle and electron-transport enzymes was transferred to a medium containing 10% glucose. After a lag phase of 30min. the yeast grew exponentially with a mean generation time of 94min. 2. The enzymes malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase and NADH–cytochrome c oxidoreductase lost 45%, 17%, 27% and 46% of their activity respectively during the lag phase. 3. When growth commenced pyruvate kinase, pyruvate decarboxylase, alcohol dehydrogenase, glutamate dehydrogenase (NADP+-linked) and NADPH–cytochrome c oxidoreductase increased in activity, whereas aconitase, isocitrate dehydrogenase (NAD+- and NADP+-linked), α-oxoglutarate dehydrogenase, fumarase, malate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, NADH oxidase, NADPH oxidase, cytochrome c oxidase, glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, isocitrate lyase and glucose 6-phosphate dehydrogenase decreased. 4. During the early stages of growth the loss of activity of aconitase, α-oxoglutarate dehydrogenase, fumarase and glucose 6-phosphate dehydrogenase could be accounted for by dilution by cell division. The lower rate of loss of activity of isocitrate dehydrogenase (NAD+- and NADP+-linked), glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, NADPH oxidase and cytochrome c oxidase implies their continued synthesis, whereas the higher rate of loss of activity of malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and NADH oxidase means that these enzymes were actively removed. 5. The mechanisms of selective removal of enzyme activity and the control of the residual metabolic pathways are discussed.  相似文献   

17.
When Saccharomyces cerevisiae are grown on a mixture of glucose and another fermentable sugar such as sucrose, maltose or galactose, the metabolism is diauxic, i.e. glucose is metabolized first, whereas the other sugars are metabolized when glucose is exhausted. This phenomenon is a consequence of glucose repression, or more generally, catabolite repression. Besides glucose, the hexoses fructose and mannose are generally also believed to trigger catabolite repression. In this study, batch fermentations of S. cerevisiae in mixtures of sucrose and either glucose, fructose or mannose were performed. It was found that the utilization of sucrose is inhibited by concentrations of either glucose or fructose higher than 5 g/l, and thus that glucose and fructose are equally capable of exerting catabolite repression. However, sucrose was found to be hydrolyzed to glucose and fructose, even when the mannose concentration was as high as 17 g/l, indicating, that mannose is not a repressing sugar. It is suggested that the capability to trigger catabolite repression is connected to hexokinase PII, which is involved in the in vivo phosphorylation of glucose and fructose. Received: 5 May 1998 / Received revision: 3 August 1998 / Accepted: 8 August 1998  相似文献   

18.
The effect on some enzymes of rat tissue of diets low in fat content   总被引:9,自引:9,他引:0  
1. Rats of two strains were kept on three different diets; one was a commercial diet of rat pellets, one contained about 80% of sucrose and 20% of casein and was supplemented with corn oil, and the third was a similar diet without the corn oil. 2. On the commercial diet, the specific activities of pyruvate kinase, glucose 6-phosphate dehydrogenase and fructose 1,6-diphosphatase in the livers of one strain of rats (strain A) were 1.5-3 times those in the other strain (strain B). When the diet high in sucrose and supplemented with corn oil was given, there were large increases in the specific activity of pyruvate kinase, glucose 6-phosphate dehydrogenase and fructose 1,6-diphosphatase in the livers of strain A rats. With strain B rats the increases were much smaller. Omission of corn oil from the diet caused a threefold increase in the specific activity of glucose 6-phosphate dehydrogenase in strain B rats, but had little effect on other enzymes. 3. The enzymes of the kidneys and hearts of strain A rats were also more active than those of strain B rats. In strain A rats, the specific activities of pyruvate kinase and fructose 1,6-diphosphatase in the kidney increased when the sucrose content of the diet was high, but in the kidneys of strain B rats there was little change. 4. In strain A rats, the specific activity of pyruvate kinase in the heart more than doubled with the high-sucrose-corn oil diet and increased threefold when corn oil was omitted. No changes were seen in strain B rats. 5. In strain A rats, omission of corn oil from the diet increased the ability of the kidneys to synthesize glucose from lactate. 6. In strain B rats, addition of corn oil to the diet resulted in a decrease in the liver in the specific activity of ATP citrate lyase and in the ability to incorporate acetate into lipid.  相似文献   

19.
A mutant of Saccharomyces cerevisiae lacking aconitase did not grow on minimal medium (MM) and had five- to tenfold less NADP+-dependent glutamate dehydrogenase (GDH) activity than the wild-type, although its glutamine synthetase (GS) activity was still inducible. When this mutant was incubated with glutamate as the sole nitrogen source, the 2-oxoglutarate content rose, and the NADP+-dependent GDH activity increased. Furthermore, carbon-limited cultures showed a direct relation between NADP+-dependent GDH activity and the intracellular 2-oxoglutarate content. We propose that the low NADP+-dependent GDH activity found in the mutant was due to the lack of 2-oxoglutarate or some other intermediate of the tricarboxylic acid cycle.  相似文献   

20.
Glutamate (5mM) inhibited glucose conversion to fatty acids by approximately one-third in adipocytes from fed rats. This inhibition was significantly less in the pressence of pyruvate or 2-oxoglutarate. After incubation of adipose tissue from fed rats with glucose and insulin, pyruvate dehydrogenase activity was 180 plus or minus 17 mU/g wet weight. Addition of glutamine to the incubation medium decreased this activity significantly (118 plus or minus 14 mU/g wet weight). This inhibition by glutamate was also diminished when 2-oxoglutarate or pyruvate were present. Glutamate added to homohentates of adipose tissue had no effect on the activation of pyruvate dehydrogenase by Mg-2+. However, glutamate inhibited the active form of the enzyme and enhanced the rate of inactivation of the enzyme complex by ATP and Mg-2+. Aminooxyacetate, a transaminase inhibitor, did not reverse the effects of glutamate on pyruvate dehydrogenase nor fatty acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号