首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Late season drought coinciding with the rice booting to heading stage affects the development of plant height,panicle exsertion,and flag leaf size,and causes significant yield loss.In this study,a recombinant inbred line population derived from a cross between paddy and upland cultivars was used for data collection of the morphologic traits under well water and drought stress conditions.bought stress was applied at the stage of panicle initiation in the field in 2002 and at the booting stage in PVC pipes in 2003.The data from stress con ditions and their ratios(tait measured under stress condition/trait measured under well water condition)or differences(trait measured under stress condition minus trait measured under well water condition)were used for OTL analysis.Totally,17 and 36 QTLs for these traits were identified in 2002 and 2003,respectively,which explained a range of 2.58%-29.82%Of the phenotypic variation.Among them,six QTLs were commonly identified in the two years,suggesting that the drought stress in the two years was different.The genetic basis of these traits will provide useful information for improving rice late season drought resistance,and their application as indirect indices in rice late season drought resistance screening was also discussed.  相似文献   

4.
Water deficits at the anthesis stage of rice (Oryza sativa L.)induce a high percentage of spikelet sterility and reduce grainyield. This study attempted to elucidate the direct effectsof water stress on panicle exsertion, spikelet opening, andspikelet desiccation leading to spikelet sterility. A well-wateredtreatment and two water stress levels were imposed in pot-grownplants of IRAT 13 (upland cultivar) and IR20 (lowland cultivar)at the time of flowering under greenhouse conditions A cultivar difference was observed in the flowering responseto water stress with a high sensitivity in IR20. The time courseof panicle exsertion showed an inhibitory effect due to thelow panicle water status. Low panicle water potentials significantlyreduced the number of opened spikelets. Spikelet opening wascompletely inhibited at panicle water potentials below –1·8MPa and –2·3 MPa in IR20 and IRAT 13, respectively.However, the peak spikelet opening time in a day was not influencedby the stress treatment. Spikelets in stressed panicles wereobserved to remain open for a longer period than in the well-wateredpanicles. The role of turgor in spikelet opening is also discussedin the study. At low panicle water potentials, severe desiccationof spikelets and anthers was noted. The deleterious effectsof water deficits on spikelet opening and spikelet water losscontributed to reduced spikelet fertility Oryza sativa L., rice, spikelet sterility, flowering, water stress, panicle water potentials, turgor potentials, desiccation  相似文献   

5.
 干旱是限制水稻(Oryza sativa)作物产量的主要生态因子之一,渗透调节是作物适应干旱逆境的生理机制之一。在人为控制水分的盆栽条件下, 对水稻生长的分蘖期、幼穗分化期、抽穗期、结实期分别进行水分胁迫,研究水稻根系及叶片渗透调节物质的变化规律。结果表明, 不同生育期 干旱胁迫后叶片水势均显著下降,根系和叶片的有机渗透调节物质如可溶性糖、游离氨基酸、脯氨酸和无机渗透调节物质包括K+、Mg2+等含量 均大幅度上升,而且幼穗分化期和抽穗期这两个对水分胁迫最敏感的时期上升幅度最大,其中又以有机渗透调节物质变化最显著。不同生育期渗 透调节大小的顺序为:抽穗期>幼穗分化期>结实期>分蘖期,反映了不同生育时期渗透调节能力的差异。同时幼穗分化期和抽穗期水分胁迫结束 后再复水后根系和叶片的有机渗透调节物质含量仍长期明显高于对照,而无机离子则变化规律比较复杂,有的升高有的则降低。叶片的渗透调 节能力大于根系,无论是叶片或根系都是K+对渗透调节的贡献最大;其次是Ca2+, 6 种渗透调节物质含量大小排列顺序为K+ > Ca2+ >可溶性糖 > Mg2+ > 游离氨基酸 > 脯氨酸。  相似文献   

6.
采用子母桶栽土培法模拟冬小麦抽穗后不同的水分胁迫状态,研究了氮肥后移对冬小麦光合特性及产量的影响.设置3个氮肥处理,分别为N1(基肥∶拔节肥∶开花肥=10∶0∶0)、N2(6∶4∶0)和N3(4∶3∶3),模拟冬小麦抽穗后2种水分胁迫(渍水胁迫、干旱胁迫),设正常供水为对照.结果表明:相同供水条件下,N2和N3处理较N1处理显著提高冬小麦灌浆期旗叶的SPAD和光合速率,确保了收获时较高的穗数、穗粒数和地上部分生物量;氮肥后移处理显著提高了冬小麦的耗水量,但其籽粒产量和水分利用效率也显著提高.相同氮肥条件下,干旱胁迫和渍水胁迫处理较正常供水显著降低了冬小麦开花期和灌浆期旗叶的光合速率、千粒重、穗粒数和产量.与正常供水相比,各氮肥条件下干旱胁迫和渍水胁迫处理花后旗叶光合速率及籽粒产量的减小幅度均表现为N1>N2>N3.表明氮肥后移通过提高旗叶SPAD、减缓花后旗叶光合速率的下降幅度、增加地上部分干物质积累量,调控产量及其构成要素,以减轻逆境灾害(干旱和渍水胁迫)对产量的影响.  相似文献   

7.
8.
温度对温敏核不育水稻eui突变体最上节间伸长的影响   总被引:1,自引:0,他引:1  
以培矮64S为对照, 采用田间调查和人工温度处理方法研究了温度对温敏核不育水稻(Oryza sativa)eui突变体(双低培eS)最上节间伸长的影响。结果表明, 双低培eS穗颈伸出度与抽穗前12–17天(花粉母细胞形成期至减数分裂期)的日均温度呈显著负相关。在温度敏感期分别进行人工温度处理, 在18–26℃条件下穗颈伸出度为正值且不包颈; 在28℃条件下出现包颈现象。在可育温度(20℃)和不育温度(24℃)条件下, 双低培eS最上节间中GA1、IAA和ZR含量极显著地高于培矮64S, 而ABA含量则显著低于培矮64S, 最上节间中最内层薄壁细胞数目分别比培矮64S多1 177和823个, 细胞平均长度分别比培矮64S长23.2和16.7 μm。温敏核不育水稻eui突变体最上节间伸长是由于节间最内层薄壁细胞数目增多和细胞长度增加双重作用所致, 其中以细胞伸长为主, 且随着处理温度的升高, 最上节间最内层薄壁细胞数目减少, 细胞平均长度变短。eui基因还可能通过调节激素间的平衡来控制温敏核不育水稻eui突变体最上节间的伸长生长。  相似文献   

9.
10.
为明确小麦不同器官表皮蜡质晶体结构和蜡质组分的差异,该研究以小麦品系CP98(11)为材料,在小麦扬花期分别取小麦的旗叶、叶鞘、穗下茎、花药和颖壳,利用气相色谱技术对各器官表皮蜡质组分进行鉴定,并通过扫描电镜观察其蜡质晶体结构。结果表明:(1)小麦不同器官的蜡质成分共鉴定出30种,主要为初级醇、二酮、烷烃、脂肪醛、脂肪酸、酯。(2)叶鞘、穗下茎、颖壳的蜡质中二酮含量最高,分别占蜡质总量的78.96%、67.03%和68.6%;花药的蜡质中烷烃含量最高(75.82%);旗叶的蜡质中初级醇含量最高(45.91%),其次为烷烃33.19%。(3)扫描电镜观察显示,旗叶正面的蜡质晶体呈片状结构,旗叶反面和颖壳的蜡质晶体结构呈片状与柱状混合的结构,花药的蜡质呈明显的波浪状结构,穗下茎和叶鞘的蜡质晶体呈柱状结构。  相似文献   

11.
In fertilized flowers of Helleborus niger L., the sepals (the showy elements of the perianth at anthesis) grow, spread, and turn green, and the peduncles elongate. These processes did not proceed to completion when the pistils were removed at the bud stage, but could be restored by the application of plant growth regulators. Cytokinins and gibberellins stimulated the formation of well-developed chloroplasts in, and spreading of, the sepals; the gibberellin, GA3, and the auxin, 4-chloroindole-3-acetic acid, promoted peduncle elongation. In fruit-bearing flowers, on the other hand, paclobutrazol, an inhibitor of gibberellin biosynthesis, reduced chlorophyll formation in the sepals, reversed sepal spreading, and inhibited peduncle elongation. Of the endogenous growth regulators in developing fruit, the following cytokinins were identified: zeatin, dihydrozeatin, N6-(2-isopentenyl)adenine and their ribosides and 9-glucosides. Zeatin riboside drastically increased in abundance (about 200 times), shortly after fertilization, when chlorophyll accumulation in the sepals occurred at the fastest rate, and remained the most prominent identified cytokinin until seed ripening.  相似文献   

12.
13.
防雨池栽条件下,设置渍水、干旱和对照3个土壤水分处理,每水分处理下再设置两个施氮水平,研究了花后渍水和干旱逆境下氮素水平对两个蛋白质含量不同的小麦品种光合特性和籽粒淀粉积累的影响.结果表明,与对照相比,花后渍水和干旱处理显著降低小麦旗叶净光合速率和SPAD值,干物质积累量下降.干旱处理下,增施氮肥提高旗叶光合速率和SPAD值,渍水处理下则相反.水分逆境明显降低籽粒可溶性总糖含量,且渍水处理下增施氮肥降低小麦叶片和籽粒可溶性总糖含量,干旱状态下规律相反.渍水处理下增施氮肥降低淀粉积累速率.水分逆境明显降低小麦粒重、产量和淀粉产量,且干旱处理下增施氮肥有利于籽粒重、产量和淀粉产量的提高,而渍水下增施氮肥使粒重和产量进一步降低.试验结果表明,花后渍水和干旱逆境下施用氮肥对小麦旗叶光合速率和籽粒淀粉积累有明显的调节效应.  相似文献   

14.
15.
Auxin transport network, which is important in the integration of plant developmental signals, depends on differential expression of the auxin efflux carrier PIN gene family. We cloned three tomato PIN (referred as SlPIN) cDNAs and examined their expression patterns in fruit and other organs. The expression of SlPIN1 and SlPIN2 was highest in very young fruit immediately after anthesis, whereas the expression of SlPIN3 was low at this same stage of fruit development. SlPIN2::GUS was expressed in ovules at anthesis and in young developing seeds at 4 days after anthesis, while SlPIN1::GUS was expressed in whole fruit. The DR5::GUS auxin-responsive reporter gene was expressed in the fruit and peduncle at anthesis and was higher in the peduncle 4 days after anthesis. These studies suggest that auxin is likely transported from young seeds by SlPIN1 and SlPIN2 and accumulated in peduncles where SlPIN gene expression is low in tomato. The possible role of SlPINs in fruit set was discussed.  相似文献   

16.
Reproductive stage water stress leads to spikelet sterility in wheat. Whereas drought stress at anthesis affects mainly grain size, stress at the young microspore stage of pollen development is characterized by abortion of pollen development and reduction in grain number. We identified genetic variability for drought tolerance at the reproductive stage. Drought‐tolerant wheat germplasm is able to maintain carbohydrate accumulation in the reproductive organs throughout the stress treatment. Starch depletion in the ovary of drought‐sensitive wheat is reversible upon re‐watering and cross‐pollination experiments indicate that the ovary is more resilient than the anther. The effect on anthers and pollen fertility is irreversible, suggesting that pollen sterility is the main cause of grain loss during drought conditions in wheat. The difference in storage carbohydrate accumulation in drought‐sensitive and drought‐tolerant wheat is correlated with differences in sugar profiles, cell wall invertase gene expression and expression of fructan biosynthesis genes in anther and ovary (sucrose : sucrose 1‐fructosyl‐transferase, 1‐SST; sucrose : fructan 6‐fructosyl‐transferase, 6‐SFT). Our results indicate that the ability to control and maintain sink strength and carbohydrate supply to anthers may be the key to maintaining pollen fertility and grain number in wheat and this mechanism may also provide protection against other abiotic stresses.  相似文献   

17.
马铃薯块茎膨大期不同程度干旱后复水的源库补偿效应   总被引:1,自引:0,他引:1  
旱后复水的补偿效应在多种作物的不同生育时期都存在,是植物抵抗逆境胁迫和伤害的重要自我调节机制,也是对有限水分高效利用的体现.本研究在马铃薯块茎膨大期进行两轮干旱后复水处理,明确马铃薯补偿效应产生的干旱胁迫阈值,并从源-库角度探索马铃薯旱后复水补偿效应产生的缘由.试验选取‘大西洋’马铃薯脱毒组培苗为材料,设置充分供水(W)、轻度干旱后复水(D1-W)、中度干旱后复水(D2-W)和重度干旱后复水(D3-W)4个水分处理并经过两个循环.结果表明:在经过两轮轻度干旱复水后,马铃薯产量表现出超补偿效应,水分利用效率和产量比充分供水分别提高了17.5%和6.3%;中度水分胁迫表现出近等量补偿效应,产量与充分供水差异不大,而水分利用效率提高了8.4%;而重度水分胁迫没有表现出产量补偿效应.不同程度的干旱胁迫均降低马铃薯叶片叶绿素含量、净光合速率、叶面积等源的大小和活性,而在复水后,轻度和中度胁迫出现了超补偿和补偿效应,增强了源的供应能力.同时,适度干旱后复水显著增强了块茎(库)中蔗糖-淀粉代谢途径关键酶的活性,提高了库活性,进而表现为块茎平均重量的增加.综上,马铃薯块茎膨大期适度的水分亏缺在复水后源-库均存在补偿和超补偿效应,以此来弥补干旱带来的损失,最终在产量上表现为补偿或者超补偿效应,并显著提高了水分利用效率.  相似文献   

18.
The upper leaf sheath of rice (Oryza sativa L.) serves as a temporary starch sink before heading, subsequently becoming a carbon source tissue to the growing panicle at the post-heading stage. The time of sink–source transition in upper leaf sheaths is highly correlated to the panicle exsertion. Here, we found that the expression profiles of starch synthesis genes such as ADP-glucose pyrophosphorylase large subunit 2, granule-bound starch synthase II, soluble starch synthase I, starch branching enzyme (SBE) I, SBEIII, and SBEIV were highly correlated with starch content changes during the heading period in the second leaf sheath below the flag leaf. In addition, the α-amylase2A and β-amylase were considered as major genes that were in charge of starch degradation at the post-heading period. Of the five sucrose transporter (OsSUT) genes, OsSUT1 and OsSUT4 appeared to play an important role in sucrose loading into the phloem of source leaf sheaths. Moreover, the microarray-based data implied that the dominant processes associated with functional leaf sheath transition from sink to source were carbohydrate metabolism and the translocation of the carbon and nitrogen sources and inorganic phosphate.  相似文献   

19.
Projections of future climate change include a strong likelihood of a doubling of current atmospheric carbon dioxide concentration ([ CO 2]) and possible shifts in precipitation patterns. Drought stress is a major environmental limitation for crop growth and yield and is common in rainfed rice production systems. This study was conducted to determine the growth and grain yield responses of rice to drought stress under [CO2] enrichment. Rice (cv. IR-72) was grown to maturity in eight naturally sunlit, plant growth chambers in atmospheric carbon dioxide concentrations [CO2] of 350 and 700 μmol CO2 mol–1 air. In both [CO2], water management treatments included continuously flooded (CF) controls, flood water removed and drought stress imposed at panicle initiation (PI), anthesis (ANT), and both panicle initiation and anthesis (PI & ANT). The [CO2] enrichment increased growth, panicles plant–1 and grain yield. Drought accelerated leaf senescence, reduced leaf area and above-ground biomass and delayed crop ontogeny. The [CO2] enrichment allowed 1–2 days more growth during drought stress cycles. Grain yields of the PI and PI & ANT droughts were similar to the CF control treatments while the ANT drought treatment sharply reduced growth, grain yield and individual grain mass. We conclude that in the absence of air temperature increases, future global increases in [CO2] should promote rice growth and yield while providing a modest reduction of near 10% in water use and so increase drought avoidance.  相似文献   

20.
Triticum aestivum (wheat) plants grown at a daynight temperature of 1813 °C from anthesis were held as well watered controls, or subject to either a mild (large pot volume) or a more severe (small pot volume) water stress by withholding water from the time of anthesis. Extracts from the peduncle (enclosed by the flag leaf sheath) and the penultimate internode were prepared to determine the activities of fructan exohydrolase and acid invertase and to assess the level of hexose sugars, sucrose and fructans. Measurements were made of ear and individual grain weights and stem fresh weight and dry weight. Plant water relations at the time of each sampling were determined as the flag leaf water potential and the water content of individual organs. Water stress resulted in a shorter duration of kernel filling, smaller kernels at maturity and an earlier loss of stem weight. There was an increase in stem fructose and a fall in fructan level that preceded the loss of dry matter associated with water stress. Coincident with the early fall in fructan content under water stress there was a rise in both fructan exohydrolase and acid invertase in the internodes of stressed plants. This correlation suggests that the conversion of fructans to fructose might have resulted from enzyme induction associated with water stress, but as this conversion occurs before the major export of reserves from the stem it might be only indirectly related to changes in the demand for reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号