首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从菝葜根茎中共分离得到3个新的二氢黄酮醇酰化糖苷(1~3)和1个已知的二氢黄酮醇苷(4),分别被鉴定为:(2R,3R)-二氢山萘酚3-氧-(6″-氧-乙酰基)-β-D-葡萄糖苷(1),(2R,3R)-二氢山萘酚3-氧-(2″-氧-乙酰基)-β-D-葡萄糖苷(2),(2R,3R)-二氢山萘酚3-氧-(3″-氧-乙酰基)-β-D-葡萄糖苷(3)及(2R,3R)-二氢山萘酚3-氧-β-D-葡萄糖苷(4)。其结构通过MS,1D NMR和2D NMR等光谱分析和化学方法确定。研究结果表明,二氢黄酮醇的酰化糖苷可能是菝葜属的特征成分。  相似文献   

2.
Flavonol glycosides from the stems of Trigonella foenum-graecum   总被引:3,自引:0,他引:3  
Han Y  Nishibe S  Noguchi Y  Jin Z 《Phytochemistry》2001,58(4):577-580
Two kaempferol glycosides [kaempferol 3-O-beta-D-glucosyl(1-->2)-beta-D-galactoside 7-O-beta-D-glucoside and kaempferol 3-O-beta-D-glucosyl(1-->2)-(6"-O-acetyl)-beta-D-galactoside 7-O-beta-D-glucoside] as well as the quercetin glycoside [quercetin 3-O-beta-D-glucosyl(1-->2)-beta-D-galactoside 7-O-beta-D-glucoside] were isolated from the stems of Trigonella foenum-graecum L. (Leguminosae) along with a known kaempferol glycoside, lilyn [kaempferol 3-O-beta-D-glucosyl(1-->2)-beta-D-galactoside]. Their structures were established by analysis of chemical and spectral evidence.  相似文献   

3.
Acylated flavonol glycosides from Eugenia jambolana leaves.   总被引:1,自引:0,他引:1  
Two acylated flavonol glycosides and 15 known polyphenols have been isolated and identified from the leaves of Eugenca jambolana Lam. The structures of the new compounds were identified as 3-O-(4"-O-acetyl)-alpha-L-rhamnopyranoside of mearnsetin (myricetin 4'-methyl ether) and myricetin 3-O-(4"-O-acetyl-2"-O-galloyl)-alpha-L-rhamnopyranoside. The complete structure elucidation of all isolated metabolites based on chemical and spectroscopic methods of analysis (UV, 1D and 2D NMR) as well as negative ESI-MS with and without CID in-source fragmentation.  相似文献   

4.
During lactose conversion at 70 degrees C, when catalyzed by beta-glycosidases from the archea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion-exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsbetaGly. However, the product spectrum of SsbetaGly is richer in trisaccharides, and this agrees with results obtained from the steady-state kinetics analyses of galactosyl transfer catalyzed by SsbetaGly and CelB. The major transgalactosylation products of SsbetaGly and CelB have been identified. They are beta-D-Galp-(1-->3)-Glc and beta-D-Galp-(1-->6)-Glc, and beta-D-Galp-(1-->3)-lactose and beta-D-Galp-(1-->6)-lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate beta(1-->6)-linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable beta-glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization.  相似文献   

5.
Biodegradation of Xanthan Gum by Bacillus sp   总被引:2,自引:0,他引:2  
Strains tentatively identified as Bacillus sp. were isolated from sewage sludge and soil and shown to elaborate extracellular enzymes that degrade the extracellular polysaccharide (xanthan gum, polysaccharide B-1459) of Xanthomonas campestris NRRL B-1459. Enzyme production by one strain was greatly enhanced when the strain was incubated in a mixed culture. Products of degradation were identified as d-glucuronic acid, d-mannose, pyruvylated mannose, 6-O-acetyl d-mannose, and a (1-->4)-linked glucan. These products correlate with the known structure of the gum. The complexity of the product mixture indicated that the xanthanase was a mixture of carbohydrases. The xanthanase complexes were similar to one another in temperature stability, pH and temperature optima, degree of substrate degradation, and enzymolysis products. Differences in pH stability, salt tolerance, recoverability, and yields of enzyme were observed.  相似文献   

6.
Porcine pancreatic and Bacillus amyloliquefaciens alpha-amylases were examined for the formation of covalent carbohydrate intermediates during reaction. The enzymes were precipitated and denatured by adding 10 volumes of acetone. When these denatured enzymes were mixed with methyl alpha-6-[(3)H]-maltooligosaccharide glycosides and chromatographed on BioGel P-2, no carbohydrate was found in the protein void volume peak. When the enzymes were added to the methyl alpha-6-[(3)H]-maltooligosaccharide glycosides and allowed to react for 15s at 1 degrees C and then precipitated and denatured with 10 volumes of acetone, (3)H-labeled carbohydrates were found in the BioGel P-2 protein void volume peak, indicating the formation of enzyme-carbohydrate covalent intermediates. (1)H NMR analysis of the denatured enzyme from the reaction with methyl alpha-maltooligosaccharide glycosides confirmed that carbohydrate was attached to the denatured enzyme. (1)H NMR saturation-transfer analysis further showed that the carbohydrate was attached to the denatured enzyme by a beta-configuration. This configuration is what would be expected for an enzyme that catalyzes the hydrolysis of alpha-(1-->4) glycosidic linkages by a two-step, S(N)2 double-displacement reaction to give retention of the alpha-configuration of the substrates at the reducing-end of the products.  相似文献   

7.
1. The lipids of ten Gram-positive bacteria have been isolated and the presence in each of a glycosyl diglyceride was established. 2. The glycolipid fractions were isolated and deacylated to give water-soluble glycosides which were purified by paper chromatography. Partial structures for the glycosides have been deduced from chemical and enzymic studies. 3. Nine of the glycosides were disaccharides glycosidically linked to the 1-position of glycerol: the remaining glycoside contained a trisaccharide similarly linked to glycerol.  相似文献   

8.
头花蓼化学成分研究   总被引:4,自引:1,他引:3  
从苗药头花蓼(Polygonum capitatumBuch.-Ham.ex D.Don)乙酸乙酯部位中分离得到9个化合物,根据理化性质结合波谱学技术分别鉴定为槲皮素-3-O-(4″-O-乙酰基)-α-L-鼠李糖苷(1)、槲皮素(2)、槲皮苷(3)、杨梅苷(4)、槲皮素-3-O-(2″-没食子酰基)-鼠李糖苷(5)、原儿茶酸(6)、胡萝卜苷(7)、没食子酸(8)、没食子酸乙酯(9)。其中化合物1为首次从该属植物中分得,化合物4为首次从该植物中分得。同时,对黄酮苷类化合物中鼠李糖不同位置乙酰基取代后的1HNMR和13C NMR波谱数据进行了归纳总结。  相似文献   

9.
A bean aphid, Megoura crassicauda, which feeds selectively on the plant genus Vicia (Fabaceae), was found to be stimulated to probe an extract solution of the host plant, narrowleaf vetch, Vicia angustifolia L., depositing characteristic stylet sheaths on a parafilm membrane. Two acylated flavonol glycosides were isolated as the specific probing stimulants from the extracts and characterized as quercetin 3-O-alpha-L-arabinopyranosyl-(1-->6)-[2"-O-(E)-p-coumaroyl]-beta-D-glucopyranoside and quercetin 3-O-alpha-L-arabinopyranosyl-(1-->6)-[2"-O-(E)-p-coumaroyl]-beta-D-galactopyranoside. A mixture of these compounds in the same equivalency strongly induced the probing response from M. crassicauda, suggesting their kairomonal roles during host recognition.  相似文献   

10.
Stevia rebaudiana leaves accumulate a mixture of at least eight different steviol glycosides. The pattern of glycosylation heavily influences the taste perception of these intensely sweet compounds. The majority of the glycosides are formed by four glucosylation reactions that start with steviol and end with rebaudioside A. The steps involve the addition of glucose to the C-13 hydroxyl of steviol, the transfer of glucose to the C-2' and C-3' of the 13-O-glucose and the addition of glucose to the hydroxyl of the C-4 carboxyl group. We used our collection of ESTs, an UDP-glucosyltransferase (UGT)-specific electronic probe and key word searches to identify candidate genes resident in our collection. Fifty-four expressed sequence tags (ESTs) belonging to 17 clusters were found using this procedure. We isolated full length cDNAs for 12 of the UGTs, cloned them into an expression vector, and produced recombinant enzymes in Escherichia coli. An in vitro glucosyltransferase activity enzyme assay was conducted using quercetin, kaempferol, steviol, steviolmonoside, steviolbioside, and stevioside as sugar acceptors, and (14)C-UDP-glucose as the donor. Thin layer chromatography was used to separate the products and three of the recombinant enzymes produced labelled products that co-migrated with known standards. HPLC and LC-ES/MS were then used to further define those reaction products. We determined that steviol UGTs behave in a regioselective manner and propose a modified pathway for the synthesis of rebaudioside A from steviol.  相似文献   

11.
Two bacteriolytic hexosaminidases isolated from Myxococcus virescens were characterized. When acting on purified cell walls of Micrococcus lysodeikticus they liberated reducing groups and N-acetylhexosamines. By chromatography on Sephadex G-50 and G-25 columns disaccharides were isolated from degraded cell walls. After reduction of the disaccharides with sodium borohydride the acid hydrolysis products were identified by thin layer chromatography. Only pale spots of glucosamine appeared after this treatment but the spots of muramic acid remained unchanged. The enzymes were found to be devoid of exo-β-N-acetylglucosaminidase activity. These results are compatible with the action of endo-β-N-acetylglucosaminidases.  相似文献   

12.
Phytochemical investigations on the chloroform and ethyl acetate soluble fractions of the roots of the Daphne oleoids led to the isolation of the coumarin glycosides 1-6. Compound 5 with IC50 values 22.05 and 26.30 microM repectively, was found to be the most active of these compounds when screened against Bacillus pasteurii and jack bean urease enzymes in a concentration-dependent fashion.  相似文献   

13.
14.
Directed evolution was applied to the beta-glycosidase of Thermus thermophilus in order to increase its ability to synthesize oligosaccharide by transglycosylation. Wild-type enzyme was able to transfer the glycosyl residue with a yield of 50% by self-condensation and of about 8% by transglycosylation on disaccharides without nitrophenyl at their reducing end. By using a simple screening procedure, we could produce mutant enzymes possessing a high transferase activity. In one step of random mutagenesis and in vitro recombination, the hydrolysis of substrates and of transglycosylation products was considerably reduced. For certain mutants, synthesis by self-condensation of nitrophenyl glycosides became nearly quantitative, whereas synthesis by transglycosylation on maltose and on cellobiose could reach 60 and 75%, respectively. Because the most efficient mutations, F401S and N282T, were located just in front of the subsite (-1), molecular modeling techniques were used to explain their effects on the synthesis reaction; we can suggest that repositioning of the glycone in the (-1) subsite together with a better fit of the acceptor in the (+1) subsite might favor the attack of a glycosyl acceptor in the mutant at the expense of water. Thus these new transglycosidases constitute an interesting alternative for the synthesis of oligosaccharides by using stable and accessible donor substrates.  相似文献   

15.
Cellobiose metabolism was studied in Alkaliflexus imshenetskii, a haloalkaliphilic hydrolytic bacterium capable of utilizing certain polymers of plant origin, as well as mono- and disaccharides. The major products of cellobiose fermentation by the bacterium were succinate and acetate, and formate was a minor product. Cellobiose could be split into glucose molecules by both β-glucosidase (hydrolytic pathway) and phosphorylase (phosphorolytic pathway); the activity of the former enzyme was two orders of magnitude higher (3600 nmol/(min mg) versus 36 nmol/(min mg)). In cell extracts of the bacterium, high activities of the Embden-Meyerhof-Parnas pathway enzymes—hexokinase, glucose-phosphate isomerase, and phosphofructokinase—were revealed, as well as the activities of glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and key enzymes of the Entner-Doudoroff pathway—6-phospho-gluconate dehydratase and 2-keto-3-deoxy-6-phospho-gluconate aldolase. Neither the activity of the key enzyme of the hexose-mono-phosphate pathway, 6-phospho-gluconate dehydrogenase, nor the activities of the key enzymes of the modified Entner-Doudoroff pathway, glucose dehydrogenase and 2-keto-3-deoxy-gluconate kinase, were revealed.  相似文献   

16.
An enzyme preparation from glutinous millet grains has been found to synthesize various riboflavin glycosides from riboflavin and disaccharides other than maltose (such as cellobiose, melibiose and lactose). Each of these riboflavin glycosides has been isolated in crystalline form and shown to have the structure, 5′-D-riboflavin-β-d-glucopyranoside, 5′-d-riboflavin-α-d-galactopyranoside and 5′-d-riboflavin-β-D-galactopyranoside.  相似文献   

17.
It has been shown that there is hemicellulase (xylanase) activity in cell-free filtrates of rumen liquor. This activity changes during the feeding cycle. The optimal pH and temperature for this activity have been found, as have the substrate-to-enzyme ratios. Many reagents, particularly heavy metal ions and phenols, inhibit the activity, but the activity is enhanced by reducing agents. No activity towards monosaccharides, disaccharides, or glycosides was found. The xylanase component was not stable, due to proteolytic enzymes in the rumen liquor, but could be purified by a variety of methods to give more-stable enzymes.  相似文献   

18.
Bean common mosaic virus (BCMV) was isolated from the naturally infected bean plants collected from the Kafr El-Sheikh and El-Gharbia Governorates. BCMV induced sever mosaic, vein banding, malformation, leaf curling and stunting on bean plants cv. Giza 6. The isolated virus was propagated in bean plants cv. Giza 6. The identification of BCMV was carried out serologically by an indirect enzyme-linked immunosorbent assay using BCMV antiserum. Positive reaction indicated that the virus under study was related serologically to Potyvirus. The molecular biology techniques were used to identify and characterise the coat protein gene of BCMV. Oligonucleotide primers were designed for BCMV according to the published nucleotide sequences of BCMV and were successfully amplified with a DNA fragment (300 bp) from BCMV CP gene by RT-PCR. The total RNA was extracted from bean leaves and was reverse-transcribed and amplified using the oligonucleotide primer. The amplified product was analysed by gel electrophoresis. Also, Southern and dot blot hybridisations were used to establish the authenticity and specificity to the RT-PCR-amplified products of BCMV. The nucleotide sequences of the Egyptian isolate of BCMV/CP showed similarity with an isolate (BCMV-NY 15) which belongs to Puerto Rico.  相似文献   

19.
The faecal fluid of the leaf-cutting ant, Atta colombica tonsipes, has been shown to contain enzymes active in the degradation of pectin, sodium polypectate, xylan, and carboxymethylcellulose. In addition, glycosidase activity has been detected in the faecal fluid using various naturally occurring disaccharides and synthetic p-nitrophenyl glycosides as substrates. The importance of these enzymes in the symbiosis between A. c. tonsipes and its food fungus is discussed, with particular emphasis on the rôle of the pectin-degrading enzymes.  相似文献   

20.
Phomopsis sp. XP-8 is an endophytic fungus that has the ability to produce pinoresinol diglucoside (PDG) in vitro and thus has potential application for the biosynthesis of PDG independent of plants. When cultivated in mung bean medium, PDG production was significantly improved and pinoresinol monoglucoside (PMG) and pinoresinol (Pin) were also found in the culture medium. In this experiment, starch, protein, and polysaccharides were isolated from mung beans and separately used as the sole substrate in order to explore the mechanism of fermentation and identify the major substrates that attributed to the biotransformation of PDG, PMG, and Pin. The production of PDG, PMG, and Pin was monitored using high-performance liquid chromatography (HPLC) and confirmed using HPLC-MS. Activities of related enzymes, including phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) were analyzed and tracked during the cultivation. The reaction system contained the compounds isolated from mung bean in the designed amount. Accumulation of phenylalanine, cinnamic acid, p-coumaric acid, PDG, PMG, and Pin and the activities of PAL, C4H, and 4CL were measured during the bioconversion. PMG was found only when mung bean polysaccharide was analyzed, while production of PDG and Pin were found when both polysaccharide and starch were analyzed. After examining the monosaccharide composition of the mung bean polysaccharide and the effect of the different monosaccharides had on the production of PMG, PDG, and Pin, galactose in mung bean polysaccharide proved to be the major factor that stimulates the production of PMG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号