首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ErbB4, a member of the epidermal growth factor (EGF) receptor family that can be activated by heregulin beta1 and heparin binding (HB)-EGF, is expressed as alternatively spliced isoforms characterized by variant extracellular juxtamembrane (JM) and intracellular cytoplasmic (CYT) domains. ErbB4 plays a critical role in cardiac and neural development. We demonstrated that ErbB4 is expressed in the ureteric buds and developing tubules of embryonic rat kidney and in collecting ducts in adult. The predominant isoforms expressed in kidney are JM-a and CYT-2. In ErbB4-transfected MDCK II cells, basal cell proliferation and hepatocyte growth factor (HGF)-induced tubule formation were decreased by all four isoforms. Only JM-a/CYT-2 cells formed tubules upon HB-EGF stimulation. ErbB4 was activated by both HRG-beta1 and HB-EGF stimulation; however, compared with HRG-beta1, HB-EGF induced phosphorylation of the 80-kDa cytoplasmic cleavage fragment of the JM-a/CYT-2 isoform. HB-EGF also induced early activation of ERK1/2 in JM-a/CYT-2 cells and promoted nuclear translocation of the JM-a/CYT-2 cytoplasmic tail. In summary, our data indicate that JM-a/CYT-2, the ErbB4 isoform that is proteinase cleavable but does not contain a PI3K-binding domain in its cytoplasmic tail, mediates important functions in renal epithelial cells in response to HB-EGF.  相似文献   

2.
Increasing cell density arrests epithelial cell proliferation by a process termed contact inhibition. We investigated mechanisms of contact inhibition using a model of contact-inhibited epithelial cells. Hepatocyte growth factor (HGF) treatment of contact-inhibited Madin-Darby canine kidney (MDCK) cells stimulated cell proliferation and increased levels of phosphorylated ERK1/2 (phospho-ERK1/2) and cyclin D1. MEK inhibitors PD-98059 and U0126 inhibited these HGF-dependent changes, indicating the dependence on phosphorylation of ERK1/2 during HGF-induced loss of contact inhibition. In relation to contact-inhibited high-density cells, low-density MDCK cells proliferated and had higher levels of phospho-ERK1/2 and cyclin D1. PD-98059 and U0126 inhibited low-density MDCK cell proliferation. Trypsinization of high-density MDCK cells immediately increased phospho-ERK1/2 and was followed by a transient increase in cyclin D1 levels. Reformation of cell junctions after trypsinization led to decreases in phospho-ERK1/2 and cyclin D1 levels. High-density MDCK cells express low levels of both cyclin D1 and phospho-ERK1/2, and treatment of these cells with fresh medium containing HGF but not fresh medium alone for 6 h increased phospho-ERK1/2 and cyclin D1 levels compared with cells without medium change. These data provide evidence that HGF abrogates MDCK cell contact inhibition by increasing ERK1/2 phosphorylation and levels of cyclin D1. These results suggest that in MDCK cells, contact inhibition of cell proliferation in the presence of serum occurs by cell density-dependent regulation of ERK1/2 phosphorylation. cell density; cyclin D1; hepatocyte growth factor; cell cycle; extracellular signal-regulated kinases  相似文献   

3.
Focal adhesion kinase (FAK) has been implicated to play a critical role in integrin-mediated control of cell behavior. However, it is unclear whether FAK also participates in the regulation of growth factor-elicited cellular functions. In this study, we have demonstrated that although overexpression of FAK in Madin-Dardy canine kidney cells did not alter their growth property or ability to form tubules within collagen gel upon hepatocyte growth factor (HGF) stimulation, it apparently enhanced HGF-induced cell scattering. This enhancement was largely because of an increase in the third phase (i.e. cell migration) of cell scattering rather than the first two phases (i.e. cell spreading and cell-cell dissociation). Conversely, the expression of FAK-related nonkinase significantly ( approximately 60%) inhibited HGF-induced cell migration. Moreover, we have found that the effect of FAK on promoting HGF-induced cell motility was greatly dependent on cell-matrix interactions. We showed that HGF treatment selectively increased the expression of integrins alpha(2) and, to a lesser extent, alpha(3) in Madin-Dardy canine kidney cells and that a monoclonal antibody against integrin alpha(2) efficiently blocked HGF-enhanced cell migration on collagen. In our efforts to determine the mechanism by which FAK promotes HGF-induced cell migration, we found that FAK mutants deficient in phosphatidylinositol 3-kinase or p130(Cas) binding failed to promote HGF-induced cell migration. Interestingly, cells expressing a FAK mutant defective in Grb2 binding exhibited a rate of migration approximately 50% lower than that of cells expressing wild type FAK in response to HGF stimulation. Taken together, our results suggest a link between HGF-increased integrin expression, FAK activation, and enhanced cell motility and implicate a role for FAK in the facilitation of growth factor-induced cell motility.  相似文献   

4.
We investigated whether or not polarized renal epithelial cells produce antibacterial factors, which aid in host defense at the cell surface of renal epithelium. A model of polarized Madin-Darby canine kidney (MDCK) epithelial cells grown on filters was used to test for the presence of apically or basolaterally secreted factors on the growth of non-virulent (XL1-Blue) and uropathogenic (J96) strains of Escherichia coli (E. coli). Growth of both XL1-Blue and J96 strains of E. coli in medium on the apical and basolateral surface of MDCK cells was inhibited as compared to bacterial growth in medium not exposed to MDCK cells. The inhibition of bacterial growth was similar in both apical and basolateral surface medium. Pretreatment of MDCK cells with hepatocyte growth factor (HGF) blunted the inhibition of XL1-Blue and J96 growth in apical and basolateral surface medium as compared to growth in medium on the surfaces of untreated MDCK cells. Immunofluorescent analysis demonstrated the presence of beta-defensin isoforms 1-3 in MDCK cells, with isoform 1 being the most prevalent form observed. HGF treatment reduced the amount of immunoreactive beta-defensin-1 in MDCK cells. These data demonstrate that polarized renal epithelium produce antibacterial factors. The renotropic growth factor HGF inhibits these antibacterial factors. beta-defensins may contribute to this antibacterial activity and play an important role in renal epithelial resistance to bacterial infections.  相似文献   

5.
Transcellular transport of a variety of ligands may be an important mechanism by which regulatory substances reach their site of action. We have studied the transcellular transport of two 6,000-mol-wt proteins, epidermal growth factor (EGF) and insulin, across polarized Madin-Darby canine kidney (MDCK) cells grown on dual-sided chambers on a nitrocellulose filter substrate. When grown on these chambers, MDCK cells are polarized and express distinct basal and apical surfaces. MDCK cells are capable of unidirectional transport of EGF from the basal-to-apical direction, 50% of bound EGF transported in 2 h. Transport was inhibited by the addition of unlabeled EGF in a dose-dependent manner. Anti-EGF receptor Ab, which inhibited binding, also inhibited transport. No transport in the apical-to-basal direction is noted. Insulin transport is not observed in either direction. Transport correlates with the presence of ligand-specific receptors on the cell surface. Hence, EGF receptors (Ro = 48,000, Kd = 3.5 X 10(-10) M) are found only on the basal surface of the MDCK cells and neither surface expresses insulin receptors. Characterization of the EGF receptors on MDCK cells, as assessed by affinity, molecular mass, and anti-receptor antibody binding reveals that this receptor has similar characteristics to EGF receptors previously described on a variety of cells. Hence, the EGF receptor can function as a transporter of EGF across an epithelial cell barrier.  相似文献   

6.
Specific insulin-like growth factor I (IGF-I) receptors on the Madin-Darby canine kidney (MDCK) cell line were identified and characterized. [125I]IGF-I specifically bound to the cells, but [125I]insulin bindings to the cells was minimal. Unlabeled IGF-I displaced both the IGF-I and insulin bindings with potencies that were 100 and 10 times as great as insulin. By an affinity labeling technique, IGF type I receptors were present in the MDCK cells. IGF-I stimulated DNA synthesis and cell proliferation at physiological concentrations. On the other hand, insulin had a little effect on DNA synthesis. These data suggest that IGF type I receptors as demonstrated in MDCK cells are involved in DNA synthesis and cell proliferation.  相似文献   

7.
Carboxypeptidase M, a plasma membrane-bound enzyme, is present in many human organs and differs from other carboxypeptidase that cleave basic COOH-terminal amino acids. Cultured Madin-Darby canine kidney (MDCK) distal tubular cells contain a kininase I-type enzyme that inactivates bradykinin by releasing Arg9. We found the properties of this kininase to be identical with carboxypeptidase M. In fractionated cells, carboxypeptidase activity sediments with membranes; and detergents, trypsin, and phosphatidylinositol-specific phospholipase C solubilize it, similar to results with human placental carboxypeptidase M. Ten microM 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid and 1 mM o-phenanthroline inhibit, whereas 1.0 mM CoCl2 activates the enzyme. It has a neutral pH optimum and cleaves COOH-terminal Arg or Lys in bradykinin and in shorter peptides. The relative hydrolysis rates of peptides in the presence or absence of 1 mM CoCl2 were similar to those obtained with human carboxypeptidase M. The carboxypeptidase in MDCK cells (54 kDa) cross-reacts with antibodies to human carboxypeptidase M in Western blotting, but not with antibodies to plasma carboxypeptidase N. The enzyme is a glycoprotein; chemical deglycosylation reduced the size to 48 kDa. The presence of the enzyme on the cell membrane of MDCK cells was also shown with transmission electron microscopy using immunogold, which indicated that the enzyme is on the apical side. In addition, MDCK cells contain neutral endopeptidase 24.11 (enkephalinase) and prolylcarboxypeptidase (angiotensinase C) activities. Partitioning of solubilized carboxypeptidase M into Triton X-114 and water indicates that trypsin and phospholipase C remove a hydrophobic tail, while detergent solubilization leaves the hydrophobic moiety intact. Labeling of MDCK cells with [3H]ethanolamine resulted in the synthesis of radiolabeled carboxypeptidase M as determined by immunoprecipitation and fluorography. Thus, MDCK cells contain membrane-bound carboxypeptidase M, which is anchored to the plasma membrane via phosphatidylinositol-glycan. As a major kininase of the distal tubules, it may regulate salt and water excretion.  相似文献   

8.
Ion channels in Madin-Darby canine kidney cells serve transepithelial chloride transport and probably cell volume regulation. Three distinct potassium channels and one anion channel have been revealed by patch clamp studies in Madin-Darby canine kidney cells. The potassium channels are activated by an increase in intracellular calcium activity. A number of hormones activate the potassium channels by an increase in intracellular calcium activity. However, under certain conditions the hormones hyperpolarize the cell membrane without increasing intracellular calcium activity sufficiently to activate the calcium-sensitive potassium channels. Thus, the hormones may activate potassium channels via another, as yet undefined, intracellular mechanism. The anion channel is stimulated by cAMP. Another factor modifying channel activity is cell volume: cell swelling leads probably to subsequent activation of potassium and anion channels. The net result is a variable transient hyperpolarization followed by a sustained depolarization of the cell membrane.  相似文献   

9.
We have characterized the role of tyrosine phosphorylation in protooncogene induction mediated by insulin-like growth factors I and II (IGF-I and IGF-II) in the Madin-Darby canine kidney (MDCK) cell line. These cells possess few, if any, insulin receptors, thus allowing determination of the effects of these growth factors in the absence of any secondary signal mediated through the insulin receptor. We found that IGF-I produced a specific stimulation of tyrosine kinase activity of the 97-kDa beta-subunit of the IGF-I receptor, resulting in autophosphorylation of the receptor and an increase in kinase activity toward a synthetic peptide substrate. This was associated with a gradual decrease in the level of phosphorylation of pp120, the major constitutive phosphotyrosine-containing protein of MDCK cells, and an increase in the ratio of serine to tyrosine phosphorylation. This was followed by a rapid, but transient, induction of c-fos gene expression, with no change in the levels of c-myc mRNA. Cycloheximide treatment resulted in a superinduction of both c-fos and c-myc and prevented any further stimulation by IGF-I. IGF-II did not stimulate tyrosine phosphorylation of its own receptor, but was 25% as active as IGF-I in stimulating phosphorylation of the IGF-I receptor. Despite this, IGF-II did not significantly enhance the expression of either nuclear protooncogene. Insulin also produced a delayed stimulation of IGF-I receptor phosphorylation, but was unable to stimulate biological effects in these cells. Under these conditions neither of the IGFs nor insulin produced any significant stimulation of thymidine incorporation into DNA. These data indicate that the IGF-I receptor can be activated upon binding of IGF-I, and to a lesser extent IGF-II, in intact cells to mediate cellular events. The nature of the signal generated by the IGF-I receptor appears to vary depending on the ligand that occupies it.  相似文献   

10.
Glc3Man9(GlcNAc)2-pyrophosphoryl-dolichol is the major lipid-linked oligosaccharide (LLO) produced by Madin-Darby canine kidney cells in culture. However, when these cells are incubated in the presence of millimolar concentrations of mannosamine and labeled with [2-3H]mannose, they accumulate various LLO that have smaller-sized oligosaccharides with unusual structures and the Glc3Man9(GlcNAc)2-pyrophosphoryl-dolichol is not detected. Thus in the presence of 10 mM mannosamine, more than 80% of the oligosaccharides are eluted from concanavalin A-Sepharose with 10 mM alpha-methylglucoside, indicating that they no longer have the tight-binding characteristics of control oligosaccharides. In addition, 20-40% of these oligosaccharides bind to Dowex 50-H+, indicating the presence of mannosamine in these structures. Interestingly enough, these abnormal oligosaccharides are still transferred to protein. The mannosamine-induced oligosaccharides were separated into neutral and basic fractions on a cation exchange resin. The neutral oligosaccharides ranged in size from hexose3(GlcNAc)2 to hexose10(GlcNAc)2 with the major species being Man5(GlcNAc)2 to Man7(GlcNAc)2. These oligosaccharides were almost completely susceptible to digestion by alpha-mannosidase and by endoglucosaminidase H. The basic oligosaccharides showed anomolous behavior on the Bio-Gel P-4 columns and appeared to be of small size on the standard columns, ranging from hexose2 to hexose4. However, most of these oligosaccharides were susceptible to digestion by endoglucosaminidase H as well as by alpha-mannosidase, suggesting that they were of different size and structure than would be predicted from the gel filtration patterns. Significantly, when the basic oligosaccharides were subjected to chemical N-acetylation, or when the gel filtration columns were run at high pH rather than at the usual pH of 3.0, the basic oligosaccharides migrated like much larger oligosaccharides. These data provide strong evidence to indicate that some mannosamine can be incorporated into the LLO, and that these mannosamine-containing oligosaccharides exhibit unusual properties. Preliminary studies indicated that Madin-Darby canine kidney cells do incorporate label from [3H]mannosamine into the LLO.  相似文献   

11.
Low density lipoprotein (LDL) receptors are present on both the apical and basal surfaces of confluent monolayers of Madin-Darby canine kidney (MDCK) epithelial cells grown on gelatin-coated polycarbonate filters. Although there is only a single species of receptor protein present, as shown by immunoblotting, the receptors on the two surfaces were found to behave differently. LDL receptors on the basal surface show all of the characteristics of the LDL receptor described in fibroblasts in that their number is dependent upon the sterol (or LDL) content of the medium; however, regulation is only affected by LDL in the medium in contact with the basal side. In contrast, the apical surface LDL receptors are not regulated by the presence of LDL in the media on either the apical or basal surface. LDL particles can be transported across the monolayer in a temperature-dependent and -specific manner from the apical to the basal sides of the cell, but not in the opposite direction. The binding of 125I-LDL to both surfaces can be effectively inhibited not only by unlabeled LDL and very low density lipoprotein, but also by an antibody directed against the LDL receptor. The data suggest that the LDL receptors on the two aspects of the cell surface are biochemically identical, but differ in function. Thus, the basal surface receptor is involved in the control of cell cholesterol homeostasis, while that on the apical surface is responsible for the transport of LDL to the basal side.  相似文献   

12.
Claudin-4 regulates ion permeability via a paracellular pathway in renal epithelial cells, but its other physiological functions have not been examined. We found that hyperosmotic stress increases claudin-4 expression in Madin-Darby canine kidney cells. Here, we examined whether claudin-4 affects cell motility, cell association, and the intracellular distribution of endogenous junctional proteins. Doxycycline-inducible expression of claudin-4 did not change endogenous levels of claudin-1, claudin-2, claudin-3, occludin, E-cadherin, and ZO-1. Claudin-4 overexpression increased cell association and decreased cell migration without affecting cell proliferation. Doxycycline did not change cell junctional protein levels, cell association or cell migration in mock-transfected cells. The insolubility of claudin-1 and -3 in Triton X-100 was increased by claudin-4 overexpression, but that of claudin-2, occludin, ZO-1, and E-cadherin was unchanged. Immunocytochemistry showed that claudin-4 overexpression increases the accumulation of claudin-1 and -3 in tight junctions (TJs). Furthermore, claudin-4 overexpression increased the association of claudin-4 with claudin-1 and -3. These results suggest that claudin-4 accumulates claudin-1 and -3 in TJs to enhance cell-cell contact in renal tubular epithelial cells.  相似文献   

13.
Recent work has demonstrated the enhancement of hormone-stimulated inositol trisphosphate formation in renal epithelial cells under conditions of glucosylceramide depletion. The role of glucosylceramide metabolism was explored further by exposing Madin-Darby canine kidney (MDCK) cells to the beta-glucosidase inhibitor conduritol B epoxide, which produced time-dependent and concentration-dependent increases in glucosylceramide levels and decreased bradykinin-stimulated inositol trisphosphate formation from isolated MDCK cell membranes. These data provide further support for an association between glucosylceramide levels and hormone-stimulated inositol trisphosphate formation.  相似文献   

14.
Heterogeneity in Madin-Darby canine kidney (MDCK) epithelial cells has been reported, however, its details have not been well described. In the present study, we show that subclones obtained from a MDCK cell line could be divided into two morphologically and biochemically distinct cell types with different hormonal responsiveness. Clones of the first type, motile clones, which had extended and flattened cytoplasm, were devoid of carbonic anhydrase activity. Clones of the second type, nonmotile clones, formed colonies of cuboidal cells and showed carbonic anhydrase activity. Motile clones synthesized cAMP in response to arginine vasopressin, prostaglandin E1, and isoproterenol but not glucagon. In contrast, nonmotile clones responded to all of these hormones. These findings suggest MDCK cells have multiple cellular origins. The motile clones have characteristics similar to the principal cells of the collecting system, whereas the nonmotile clones may be derived from the thick ascending limb or the intercalated cell. Our studies also demonstrate a significant influence of culture condition on MDCK cellular behavior (carbonic anhydrase activity, Na+/K+-ATPase activity and vasopressin responsiveness). Therefore, physiologic and biochemical experiments with MDCK cells must be interpreted with reservations about cellular heterogeneity as well as differences induced by culture conditions.  相似文献   

15.
16.
The development of surface polarity has been studied in the epithelial Madin-Darby canine kidney (MDCK) cell line by examining two basolateral markers: a monoclonal antibody against a 58-kd protein and [35S]methionine uptake. The surface distribution of these markers was followed after plating the cells on coverslips or nitrocellulose filters. In subconfluent monolayers the apical surface of many cells was stained with the anti-58-kd antibody. Clearing of the apical surface occurred first after confluency had been reached in cells grown on coverslips. Similarly, in cells grown on filters the basolateral 58-kd protein disappeared from the apical surface concomitantly with the development of a measurable electrical resistance over the cell monolayer. The uptake of [35S]methionine was measured from both sides of filter-grown cells and began to polarize early after seeding, reaching a value of greater than 98% basolateral in the fully polarized monolayer. These results emphasize that the development of surface polarity in MDCK cells is a gradual process, and that extensive cell-cell contacts seem to be required for complete surface polarization.  相似文献   

17.
Tight junctions (TJs) are the most apical cell-cell junctions, and claudins, the recently identified TJ proteins, are critical for maintaining cell-cell adhesion in epithelial cell sheets. Based on their in vivo distribution and the results of overexpression studies, certain claudins, including claudin-1 and -4, are postulated to increase, whereas other claudins, especially claudin-2, are postulated to decrease the overall transcellular resistance. The overall ratio among claudins expressed in a cell/tissue has been hypothesized to define the complexity of TJs. Disruption of the TJs contributes to various human diseases, and a correlation between reduction of TJ function and tumor dedifferentiation has been postulated. The epidermal growth factor (EGF) receptor (EGFR) is overexpressed in a wide spectrum of epithelial cancers, and its expression correlates with a more metastatic cancer phenotype. However, normal functioning of EGFR is essential for normal epithelial cell proliferation and differentiation. The role of EGFR-dependent signaling in the development and maintenance of epithelial TJ integrity has not been studied in detail. This study demonstrates that, in polarized Madin-Darby canine kidney II cells, EGF-induced EGFR activation significantly inhibited claudin-2 expression while simultaneously inducing cellular redistribution and increased expression of claudin-1, -3, and -4. Accompanying these EGF-induced changes in claudin expression was a 3-fold increase in transepithelial resistance, a functional measure of TJs. In contrast, there were no alterations in protein expression and/or intracellular localization of other TJ-related proteins (ZO-1 and occludin) or adherens junction-associated proteins (E-cadherin and beta-catenin), suggesting that EGF regulates TJ function through selective and differential regulation of claudins.  相似文献   

18.
Using affinity cross-linking techniques, we report the presence of type I IGF and type II IGF receptors in Madin-Darby canine kidney cells, a line of cells lacking insulin receptors. The IGF receptors were further characterized by competition binding studies and found to be similar to IGF receptors in other tissue types. In Madin-Darby canine kidney cells, the type I IGF receptor binds IGF-I greater than IGF-II greater than insulin and the type II IGF receptor binds IGF-II and IGF-I with approximately the same affinity, but does not bind insulin.  相似文献   

19.
The antiherpes compound, foscarnet (trisodium phosphonoformate), showed concentration-dependent effects on the cell kinetics of Madin-Darby canine kidney cells. At 1 mM, only minor effects could be seen on cell proliferation and cell cycle distribution, as measured by flow cytometry DNA analysis. Treatment with 5 mM foscarnet resulted in an accumulation of cells in the S-phase although no complete cell cycle block was evident. At 10 mM foscarnet, cells accumulated earlier in the S phase, probably at the G1/S border. However, at both 5 and 10 mM foscarnet the block was not established until after 15 h incubation. Upon removing 10 mM foscarnet after 24 h incubation, G1 cells rapidly entered the S phase, whereas the progression through S and G2 + M was delayed considerably. The DNA synthesizing S phase seems, therefore, to be the main cell cycle phase affected by foscarnet.  相似文献   

20.
We have recently demonstrated that fibroblast-conditioned medium induces Madin-Darby canine kidney (MDCK) epithelial cells to form branching tubules when grown in three-dimensional collagen or fibrin gels (Montesano, R., Schaller, G., and Orci, L. (1991) Cell 66, 697-711), and that this morphogenetic effect is mediated by hepatocyte growth factor (HGF), also known as scatter factor (Montesano, R., Matsumoto, K., Nakamura, T., and Orci, L. (1991) Cell 67, 901-908). In fibrin gels, this effect is inhibited by addition of exogenous serine protease inhibitors, which suggests a role for plasminogen activators (PAs) in the matrix remodeling required for tubulogenesis. In the studies reported in this paper, we have investigated the effect of fibroblast-conditioned medium (CM) and HGF on the production of PAs by MDCK cells. We have found that urokinase-type PA (u-PA) activity and mRNA are increased 4.9-fold by CM from human MRC-5 fibroblasts, which has tubulogenic activity, but not by CM from human Detroit-550 fibroblasts, which lacks tubulogenic activity. The u-PA inductive property of MRC-5 CM was completely inhibited by preincubation with antibodies to recombinant human HGF (rhHGF). Exogenously added rhHGF also increased u-PA activity and mRNA 5.9-fold in MDCK cells, with an optimal effect at approximately 10 ng/ml. MRC-5 CM also increased u-PA receptor mRNA 34.9-fold in MDCK cells, an effect which was inhibited by 71% by preincubating the CM with antibodies to rhHGF, and which was mimicked by exogenously added rhHGF (31.3-fold increase). These results demonstrate that HGF, which induces tubulogenesis by MDCK cells in vitro, also increases u-PA and u-PA receptor expression in these cells. Taken together with our previous observations, this suggests that the resulting increase in extracellular proteolysis, appropriately localized to the cell surface, is required for epithelial morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号