首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
T(H)1 and T(H)2 cells: a historical perspective   总被引:1,自引:0,他引:1  
Demonstration of the existence and functions of T helper (T(H))1 and T(H)2 cells has had an enormous impact on basic and applied immunology. T(H)1 and T(H)2 cells have a crucial role in balancing the immune response. In this article, I attempt to trace the historical events contributing to the development of the T(H)1/T(H)2 concept, the current state of play, and briefly discuss the future prospects for the field.  相似文献   

3.
Quinacrine fluorescent banding patterns of chromosomes 9 and 13 are very similar in mitotic preparations of Mus musculus. Meiotic studies were carried out in male and female mice heterozygous for two translocations involving these chromosomes to determine whether the translocations have a common chromosome. The results indicate that chromosome 9 is involved in the T163H translocation but not in either the T70H or T264Ca translocations. The T70H and T264Ca translocations, but not the T163H, have chromosome 13 in common. These results support the interpretations based on mitotic studies.  相似文献   

4.
Multiple sclerosis is an inflammatory, demyelinating disease of the central nervous system (CNS) characterized by a wide range of clinical signs. The location of lesions in the CNS is variable and is a crucial determinant of clinical outcome. Multiple sclerosis is believed to be mediated by myelin-specific T cells, but the mechanisms that determine where T cells initiate inflammation are unknown. Differences in lesion distribution have been linked to the HLA complex, suggesting that T cell specificity influences sites of inflammation. We demonstrate that T cells that are specific for different myelin epitopes generate populations characterized by different T helper type 17 (T(H)17) to T helper type 1 (T(H)1) ratios depending on the functional avidity of interactions between TCR and peptide-MHC complexes. Notably, the T(H)17:T(H)1 ratio of infiltrating T cells determines where inflammation occurs in the CNS. Myelin-specific T cells infiltrate the meninges throughout the CNS, regardless of the T(H)17:T(H)1 ratio. However, T cell infiltration and inflammation in the brain parenchyma occurs only when T(H)17 cells outnumber T(H)1 cells and trigger a disproportionate increase in interleukin-17 expression in the brain. In contrast, T cells showing a wide range of T(H)17:T(H)1 ratios induce spinal cord parenchymal inflammation. These findings reveal critical differences in the regulation of inflammation in the brain and spinal cord.  相似文献   

5.
Steinman L 《Nature medicine》2007,13(2):139-145
For over 35 years, immunologists have divided T-helper (T(H)) cells into functional subsets. T-helper type 1 (T(H)1) cells-long thought to mediate tissue damage-might be involved in the initiation of damage, but they do not sustain or play a decisive role in many commonly studied models of autoimmunity, allergy and microbial immunity. A major role for the cytokine interleukin-17 (IL-17) has now been described in various models of immune-mediated tissue injury, including organ-specific autoimmunity in the brain, heart, synovium and intestines, allergic disorders of the lung and skin, and microbial infections of the intestines and the nervous system. A pathway named T(H)17 is now credited for causing and sustaining tissue damage in these diverse situations. The T(H)1 pathway antagonizes the T(H)17 pathway in an intricate fashion. The evolution of our understanding of the T(H)17 pathway illuminates a shift in immunologists' perspectives regarding the basis of tissue damage, where for over 20 years the role of T(H)1 cells was considered paramount.  相似文献   

6.
Modulation of chicken macrophage effector function by T(H)1/T(H)2 cytokines   总被引:1,自引:0,他引:1  
He H  Genovese KJ  Kogut MH 《Cytokine》2011,53(3):363-369
Regulation of macrophage activity by T(H)1/2 cytokines is important to maintain the balance of immunity to provide adequate protective immunity while avoiding excessive inflammation. IFN-γ and IL-4 are the hallmark T(H)1 and T(H)2 cytokines, respectively. In avian species, information concerning regulation of macrophage activity by T(H)1/2 cytokines is limited. Here, we investigated the regulatory function of chicken T(H)1 cytokines IFN-γ, IL-18 and T(H)2 cytokines IL-4, IL-10 on the HD11 macrophage cell line. Chicken IFN-γ stimulated nitric oxide (NO) synthesis in HD11 cells and primed the cells to produce significantly greater amounts of NO when exposed to microbial agonists, lipopolysaccharide, lipoteichoic acid, peptidoglycan, CpG-ODN, and poly I:C. In contrast, chicken IL-4 exhibited bi-directional immune regulatory activity: it activated macrophage NO synthesis in the absence of inflammatory agonists, but inhibited NO production by macrophages in response to microbial agonists. Both IFN-γ and IL-4, however, enhanced oxidative burst activity of the HD11 cells when exposed to Salmonella enteritidis. IL-18 and IL-10 did not affect NO production nor oxidative burst in HD11 cells. Phagocytosis and bacterial killing by the HD11 cells were not affected by the treatments of these cytokines. Infection of HD11 cells with S.enteritidis was shown to completely abolish NO production regardless of IFN-γ treatment. This study has demonstrated that IFN-γ and IL-4 are important T(H)1 and T(H)2 cytokines that regulate macrophage function in chickens.  相似文献   

7.
8.
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
Mice heterozygous for the T(X;16)16H translocation and carrying Sxr on their normal (inactive) X chromosome (ie, T16H/X Sxr individuals) may develop as males, females, or hermaphrodites. The proportion of males varied from 22% to 65% depending on the source of the normal X chromosome. A model is proposed, according to which relatively small variations in the spreading of inactivation from the X chromosome into the attached Sxr fragment produce large changes in the proportion of males. Testis weight in T16H/X Sxr males was found to be significantly smaller than in X/X Sxr males, irrespective of the source of the normal X chromosome.  相似文献   

12.
The meiotic behavior of translocation heterozygous T70 (1;13)H/+ male mice with a Snell dwarf (dw/dw) genotype was compared with that of nondwarf T70H/+ controls. A four-fold increase in the nondisjunction frequency of the normal bivalents occurred as a consequence of the dwarf genotype. This increase is identical to that seen in karyologically normal dwarf males. No effect of the dwarf condition on the segregation of the translocation multivalent could be noted. Thus, translocation heterozygosity does not enhance the meiotic instability caused by the hypopituitary dwarf condition. From a small sample of oocytes from T70H/+ and chromosomally normal dwarf females it is concluded that nondisjunction in females is not increased by the dwarf condition. In general we conclude that animals with higher spontaneous nondisjunction levels are not necessarily more sensitive to factors increasing nondisjunction.  相似文献   

13.
14.
Asthma has been considered a T helper 2 (T(H)2) cell-associated inflammatory disease, and T(H)2-type cytokines, such as interleukin-4 (IL-4), IL-5 and IL-13, are thought to drive the disease pathology in patients. Although atopic asthma has a substantial T(H)2 cell component, the disease is notoriously heterogeneous, and recent evidence has suggested that other T cells also contribute to the development of asthma. Here, we discuss the roles of different T cell subsets in the allergic lung, consider how each subset can contribute to the development of allergic pathology and evaluate how we might manipulate these cells for new asthma therapies.  相似文献   

15.
Inflammatory T helper 1 (T(H)1)-cell responses successfully eradicate pathogens, but often also cause immunopathology. To minimize this deleterious side-effect the anti-inflammatory cytokine interleukin-10 (IL-10) is produced. Although IL-10 was originally isolated from T(H)2 cells it is now known to be produced by many cell types. Here, we discuss the recent evidence that shows that T(H)1 cells are the main source of IL-10 that controls the immune response against Leishmania major and Toxoplasma gondii infection.  相似文献   

16.
17.
18.
19.
The FLASH and STEAM pulse sequences were used to perform the microimaging and localized spectroscopy of brain of living and dead mice, respectively. The phase-shift presaturation approach was used to suppress water NMR signal. The experimental results show that the differences in localized spectra and MR images of brain between live and dead mice can be observed by means of magnetic resonance microscopy.  相似文献   

20.
In the mouse, the autosomal reciprocal translocation T (7; 19) 145 H caused complete male sterility. The spermatogenesis was arrested at prophase or early metaphase I stages during the first meiotic division. The exocrine and endocrine testicular functions of azoospermic males (T 145 H/+) were compared with those of normal male littermates (+/+) at 63 days of age. Testis and epididymis weights in T 145 H/+ were significantly lower than those in +/+. By histological examination, the interstitial cells appeared preponderant but this was probably illusory due to the decrease in seminiferous tubular size and diminished testicular size. Moreover, androgen activity in T 145 H/+ seemed normal judging by weights of androgen target tissues (prostate, seminal vesicles), and plasma testosterone level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号