首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The malaria mosquito species of subgenus Cellia have rich inversion polymorphisms that correlate with environmental variables. Polymorphic inversions tend to cluster on the chromosomal arms 2R and 2L but not on X, 3R and 3L in Anopheles gambiae and homologous arms in other species. However, it is unknown whether polymorphic inversions on homologous chromosomal arms of distantly related species from subgenus Cellia nonrandomly share similar sets of genes. It is also unclear if the evolutionary breakage of inversion-poor chromosomal arms is under constraints.  相似文献   

2.

Background  

In the Anopheles gambiae complex, paracentric chromosomal inversions are non-randomly distributed along the complement: 18/31 (58%) of common polymorphic inversions are on chromosome arm 2R, which represents only ~30% of the complement. Moreover, in An. gambiae sensu stricto, 6/7 common polymorphic inversions occur on 2R. Most of these inversions are considered markers of ecological adaptation that increase the fitness of the carriers of alternative karyotypes in contrasting habitats. However, little is known about the evolutionary forces responsible for their origin and subsequent establishment in field populations.  相似文献   

3.
Although chromosomal deletions and inversions are important in cancer, conventional methods for detecting DNA rearrangements require laborious indirect assays. Here we develop fluorescent reporters to rapidly quantify CRISPR/Cas9-mediated deletions and inversions. We find that inversion depends on the non-homologous end-joining enzyme LIG4. We also engineer deletions and inversions for a 50 kb Pten genomic region in mouse liver. We discover diverse yet sequence-specific indels at the rearrangement fusion sites. Moreover, we detect Cas9 cleavage at the fourth nucleotide on the non-complementary strand, leading to staggered instead of blunt DNA breaks. These reporters allow mechanisms of chromosomal rearrangements to be investigated.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0680-7) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii.

Methodology/Principal Findings

To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z 3. In the non inverted chromosome, the 2z 3 distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric.

Conclusions/Significance

Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo''s unusual structure and current (or recent) transpositional activity.  相似文献   

5.
6.

Background  

Gene loss, inversions, translocations, and other chromosomal rearrangements vary among species, resulting in different rates of structural genome evolution. Major chromosomal rearrangements are rare in most eukaryotes, giving large regions with the same genes in the same order and orientation across species. These regions of macrosynteny have been very useful for locating homologous genes in different species and to guide the assembly of genome sequences. Previous analyses in the fungi have indicated that macrosynteny is rare; instead, comparisons across species show no synteny or only microsyntenic regions encompassing usually five or fewer genes. To test the hypothesis that chromosomal evolution is different in the fungi compared to other eukaryotes, synteny was compared between species of the major fungal taxa.  相似文献   

7.

Background

Sex-determination genes drive the evolution of adjacent chromosomal regions. Sexually antagonistic selection favors the accumulation of inversions that reduce recombination in regions adjacent to the sex-determination gene. Once established, the clonal inheritance of sex-linked inversions leads to the accumulation of deleterious alleles, repetitive elements and a gradual decay of sex-linked genes. This in turn creates selective pressures for the evolution of mechanisms that compensate for the unequal dosage of gene expression. Here we use whole genome sequencing to characterize the structure of a young sex chromosome and quantify sex-specific gene expression in the developing gonad.

Results

We found an 8.8 Mb block of strong differentiation between males and females that corresponds to the location of a previously mapped sex-determiner on linkage group 1 of Oreochromis niloticus. Putatively disruptive mutations are found in many of the genes within this region. We also found a significant female-bias in the expression of genes within the block of differentiation compared to those outside the block of differentiation. Eight candidate sex-determination genes were identified within this region.

Conclusions

This study demonstrates a block of differentiation on linkage group 1, suggestive of an 8.8 Mb inversion encompassing the sex-determining locus. The enrichment of female-biased gene expression inside the proposed inversion suggests incomplete dosage compensation. This study helps establish a model for studying the early-to-intermediate stages of sex chromosome evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-975) contains supplementary material, which is available to authorized users.  相似文献   

8.

BACKGROUND:

One of the frequent occurrences in chromosome rearrangements is pericentric inversion of the Chromosome 9; inv (9) (p11q12), which is consider to be the variant of normal karyotype. Although it seems not to correlate with abnormal phenotypes, there have been many controversial reports indicating that it may lead to abnormal clinical conditions such as infertility. The incidence is found to be about 1.98% in the general population.

MATERIALS AND METHODS:

We investigated the karyotypes of 300 infertile couples (600 individuals) being referred to our infertility clinic using standard GTG banding for karyotype preparation.

RESULTS:

The chromosomal analysis revealed a total of 15 (2.5%) inversions, among these, 14 male patients were inversion 9 carriers (4.69%) while one female patient was affected (0.33%). The incidence of inversion 9 in male patients is significantly higher than that of normal population and even than that of female patients (P< 0.05).

CONCLUSIONS:

This result suggests that inversion 9 may often cause infertility in men due to spermatogenic disturbances, which are arisen by the loops or acentric fragments formed in meiosis.  相似文献   

9.

Background

The chloroplast trnH-psbA spacer region has been proposed as a prime candidate for use in DNA barcoding of plants because of its high substitution rate. However, frequent inversions associated with palindromic sequences within this region have been found in multiple lineages of Angiosperms and may complicate its use as a barcode, especially if they occur within species.

Methodology/Principal Findings

Here, we evaluate the implications of intraspecific inversions in the trnH-psbA region for DNA barcoding efforts. We report polymorphic inversions within six species of Gentianaceae, all narrowly circumscribed morphologically: Gentiana algida, Gentiana fremontii, Gentianopsis crinita, Gentianopsis thermalis, Gentianopsis macrantha and Frasera speciosa. We analyze these sequences together with those from 15 other species of Gentianaceae and show that typical simple methods of sequence alignment can lead to misassignment of conspecifics and incorrect assessment of relationships.

Conclusions/Significance

Frequent inversions in the trnH-psbA region, if not recognized and aligned appropriately, may lead to large overestimates of the number of substitution events separating closely related lineages and to uniting more distantly related taxa that share the same form of the inversion. Thus, alignment of the trnH-psbA spacer region will need careful attention if it is used as a marker for DNA barcoding.  相似文献   

10.
We studied the species composition and chromosomal variability of malaria mosquitoes in the Volga Basin (Upper, Middle, and Lower Volga regions). We investigated larvae karyotypes of sibling species of the Anopheles maculipennis group. We calculated the frequencies of chromosomal inversions in the local populations of the dominant species An. messeae. We discovered that karyotypic structure of An. messeae populations depends on landscape-climatic zones. Populations of the Upper, Middle and Lower Volga differ in frequency of chromosome inversions XL, 2R, 3R, and 3L.  相似文献   

11.

BACKGROUND:

Turner''s syndrome is the most common chromosomal abnormality in females, affecting 1 in 2,500 live female births. It is a result of absence of an X chromosome or the presence of a structurally abnormal X chromosome. Its most consistent clinical features are short stature and ovarian failure.

AIM:

The aim of the study was to report a rare case of mosaic triple X syndrome in a female with primary amenorrhea.

MATERIALS AND METHODS:

The chromosomal analysis using GTG banding was carried out, which revealed a mosaicism with 45,XO/47,XXX chromosomal constitution. Fluorescent in situ hybridization was also carried out to further confirm the observation made in the study.

CONCLUSION:

The physical features presented by the female could be due to the 45,XO/47,XXX mosaicism and the karyotype analysis was consistent with the diagnosis and clinical symptoms. Triple X mosaicism was confirmed with conventional and molecular cytogenetic analysis.  相似文献   

12.

Background

Generation of long (>5 Kb) DNA sequencing reads provides an approach for interrogation of complex regions in the human genome. Currently, large-insert whole genome sequencing (WGS) technologies from Pacific Biosciences (PacBio) enable analysis of chromosomal structural variations (SVs), but the cost to achieve the required sequence coverage across the entire human genome is high.

Results

We developed a method (termed PacBio-LITS) that combines oligonucleotide-based DNA target-capture enrichment technologies with PacBio large-insert library preparation to facilitate SV studies at specific chromosomal regions. PacBio-LITS provides deep sequence coverage at the specified sites at substantially reduced cost compared with PacBio WGS. The efficacy of PacBio-LITS is illustrated by delineating the breakpoint junctions of low copy repeat (LCR)-associated complex structural rearrangements on chr17p11.2 in patients diagnosed with Potocki–Lupski syndrome (PTLS; MIM#610883). We successfully identified previously determined breakpoint junctions in three PTLS cases, and also were able to discover novel junctions in repetitive sequences, including LCR-mediated breakpoints. The new information has enabled us to propose mechanisms for formation of these structural variants.

Conclusions

The new method leverages the cost efficiency of targeted capture-sequencing as well as the mappability and scaffolding capabilities of long sequencing reads generated by the PacBio platform. It is therefore suitable for studying complex SVs, especially those involving LCRs, inversions, and the generation of chimeric Alu elements at the breakpoints. Other genomic research applications, such as haplotype phasing and small insertion and deletion validation could also benefit from this technology.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1370-2) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background  

Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies.  相似文献   

14.

Background

Multicolour Fluorescence In-Situ Hybridization (M-FISH) images are employed for detecting chromosomal abnormalities such as chromosomal translocations, deletions, duplication and inversions. This technique uses mixed colours of fluorochromes to paint the whole chromosomes for rapid detection of chromosome rearrangements. The M-FISH data sets used in our research are obtained from microscopic scanning of a metaphase cell labelled with five different fluorochromes and a DAPI staining. The reliability of the technique lies in accurate classification of chromosomes (24 classes for male and 23 classes for female) from M-FISH images. However, due to imaging noise, mis-alignment between multiple channels and many other imaging problems, there is always a classification error, leading to wrong detection of chromosomal abnormalities. Therefore, how to accurately classify different types of chromosomes from M-FISH images becomes a challenging problem.

Methods

This paper presents a novel sparse representation model considering structural information for the classification of M-FISH images. In our previous work a sparse representation based classification model was proposed. This model employed only individual pixel information for the classification. With the structural information of neighbouring pixels as well as the information of themselves simultaneously, the novel approach extended the previous one to the regional case. Based on Orthogonal Matching Pursuit (OMP), we developed simultaneous OMP algorithm (SOMP) to derive an efficient solution of the improved sparse representation model by incorporating the structural information.

Results

The p-value of two models shows that the newly proposed model incorporating the structural information is significantly superior to our previous one. In addition, we evaluated the effect of several parameters, such as sparsity level, neighbourhood size, and training sample size, on the of the classification accuracy.

Conclusions

The comparison with our previously used sparse model demonstrates that the improved sparse representation model is more effective than the previous one on the classification of the chromosome abnormalities.
  相似文献   

15.

BACKGROUND:

In 4%-8% of couples with recurrent abortion, at least one of the partners has chromosomal abnormality. Most spontaneous miscarriages which happen in the first and second trimesters are caused by chromosomal abnormalities. These chromosomal abnormalities may be either numerical or structural.

MATERIAL AND METHODS:

Cytogenetic study was done for 73 Egyptian couples who presented with recurrent abortion at Genetic Unit of Children Hospital, Mansoura University.

RESULTS:

We found that the frequency of chromosomal abnormalities was not significantly different from that reported worldwide. Chromosomal abnormalities were detected in 9 (6.1%) of 73 couples. Seven of chromosomal abnormalities were structural and two of them were numerical.

CONCLUSION:

Our results showed that 6.1% of the couples with recurrent abortion had chromosomal abnormalities, with no other abnormalities. We suggest that it is necessary to perform cytogenetic in vestigation for couples who have recurrent abortion.  相似文献   

16.
M. J. Mahan  J. R. Roth 《Genetics》1991,129(4):1021-1032
Homologous recombination between sequences present in inverse order within the same chromosome can result in inversion formation. We have previously shown that inverse order sequences at some sites (permissive) recombine to generate the expected inversion; no inversions are found when the same inverse order sequences flank other (nonpermissive) regions of the chromosome. In hopes of defining how permissive and nonpermissive intervals are determined, we have constructed a strain that carries a large chromosomal inversion. Using this inversion mutant as the parent strain, we have determined the "permissivity" of a series of chromosomal sites for secondary inversions. For the set of intervals tested, permissivity seems to be dictated by the nature of the genetic material present within the chromosomal interval being tested rather than the flanking sequences or orientation of this material in the chromosome. Almost all permissive intervals include the origin or terminus of replication. We suggest that the rules for recovery of inversions reflect mechanistic restrictions on the occurrence of inversions rather than lethal consequences of the completed rearrangement.  相似文献   

17.

Key message

Probabilistic graphical models show great potential for robust and reliable construction of linkage maps. We show how to use probabilistic graphical models to construct high-quality linkage maps in the face of data perturbations caused by genotyping errors and reciprocal translocations.

Abstract

It has been shown that linkage map construction can be hampered by the presence of genotyping errors and chromosomal rearrangements such as inversions and translocations. Here, we report a novel method for linkage map construction using probabilistic graphical models. The method is proven, both theoretically and practically, to be effective in filtering out markers that contain genotyping errors. In particular, it carries out marker filtering and ordering simultaneously, and is therefore superior to the standard post hoc filtering using nearest-neighbour stress. Furthermore, we demonstrate empirically that the proposed method offers a promising solution to linkage map construction in the case of a reciprocal translocation.
  相似文献   

18.
There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U) and the sex chromosome (A), taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands) in the north to Málaga (Spain) in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection.  相似文献   

19.
Allozyme and chromosomal polymorphism were analysed simultaneously in three population samples of Drosophila subobscura from Scotland, Germany and Italy. The study revealed significant genic divergence between the various chromosomal gene arrangements for the loci Acph, Lap and Pep, which are located inside inversions. No difference was found with the loci Me and Odh, which are both on the same chromosome but proximal to the structurally polymorphic region. Samples of a given gene arrangement taken from the different localities are genetically uniform. The data indicate that the observed non-random associations between enzyme genes and chromosomal inversions are the result of inhibited recombination in heterokaryotypes and gradual differentiation of the separated gene pools, rather than selection and coadaptation.  相似文献   

20.
A. Daniel 《Human genetics》1981,56(3):321-328
Summary The potential chromosomal imbalance in offspring of pericentric inversion heterozygotes can be evaluated by measuring (% of haploid autosomal length, % HAL) the chromosomal segments distal to the breakpoints in the inversion. These distal segments were measured in presently reported and published cases of pericentric inversions, divided into two ascertainment groups: (I) those ascertained through recombinant offspring and (II) those ascertained through balanced heterozygotes. The distal segments in group II inversions were significantly larger than those of group I, i.e., the potentially larger chromosomal imbalances were not observed in full-term offspring. These results are discussed in relation to the model of risk of abnormal offspring in the progeny of heterozygotes for structural rearrangements (the chromosome imbalance size-viability model). The mean distal segment sizes for group I and group II pericentric inversions were respectively not significantly different from the mean interchange segment size for a sample of reciprocal translocations divided into the same two ascertainment groups. It was concluded that the restrictions on the size (% HAL) of chromosomal imbalance in offspring surviving until term are similar whether this imbalance arises from reciprocal translocations or pericentric inversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号