首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular chaperones facilitate the correct folding of other proteins, and heat shock proteins form one of the major classes of molecular chaperones. Heat shock protein 70 (Hsp70) has been extensively studied, and shown to be critically important for cellular protein homeostasis in almost all prokaryotic and eukaryotic systems studied to date. Since there have been very limited studies conducted on coelacanth chaperones, the main objective of this study was to genetically and biochemically characterize a coelacanth Hsp70. We have successfully isolated an Indonesian coelacanth (L. menadoensis) hsp70 gene, Lmhsp70, and found that it contained an intronless coding region and a potential upstream regulatory region. Lmhsp70 encoded a typical Hsp70 based on conserved structural and functional features, and the predicted upstream regulatory region was found to contain six potential promoter elements, and three potential heat shock elements (HSEs). The intronless nature of the coding region and the presence of HSEs suggested that Lmhsp70 was stress-inducible. Phylogenetic analyses provided further evidence that Lmhsp70 was probably inducible, and that it branched as a clade intermediate between bony fish and tetrapods. Recombinant LmHsp70 was successfully overproduced, purified and found to be functional using ATPase activity assays. Taken together, these data provide evidence for the first time that the coelacanth encodes a functional molecular chaperone system. K. W. Modisakeng and M. Jiwaji contributed equally to this study.  相似文献   

2.
3.
Alkaline hydrolysis of cell wall material of tomato hairy roots yielded ferulic acid as the major phenolic compound. Other phenolics were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. The content of phenolics was much higher at the early stage of hairy root growth. The ferulic acid content decreased up to 30 days and then sharply increased to 360 microg/g at 60 days of growth. Elicitation of hairy root cultures with Fusarium mat extract (FME) increased ferulic acid content 4-fold after 24 h. As the pathogen-derived elicitors have specific receptors in plants, FME may thus be used for inducing resistance against Fusarium oxysporum f. sp. lycopersici.  相似文献   

4.
The Agrobacterium rhizogenes rolD gene, coding for an ornithine cyclodeaminase involved in the biosynthesis of proline from ornithine, has been inserted in Lycopersicon esculentum cv Tondino with the aim of studying its effects on plant morphological characters including pathogen defense response. The analysis of plants transgenic for rolD did not show major morphological modifications. First generation transgenic plants however were found to flower earlier, and showed an increased number of inflorescences and higher fruit yield. Transformed plants were also analysed for parameters linked to pathogen defense response, i.e. ion leakage in the presence of the toxin produced by the fungus Fusarium oxysporum f. sp. lycopersici, and expression of the pathogenesis-related PR-1 gene. All the plants harbouring the rolD gene were shown to be more tolerant to the toxin in ion leakage experiments, with respect to the untransformed regenerated controls and the cv Tondino. PR-1 gene expression was quantitated by means of real-time PCR both at the basal level and after treatment with salicylic acid, an inducer of Systemic Acquired Resistance. In both cases the amount of PR-1 mRNA was higher in the transgenic plants. It seems therefore that the transformation of tomato plants with rolD could lead to an increased competence for defense response, as shown by toxin tolerance and increased expression of the Systemic Acquired Resistance marker gene PR-1. The results are finally discussed in view of their possible economic relevance.Communicated by G. Wenzel  相似文献   

5.
The effects of cadmium (Cd) stress on lipid composition and biosynthesis were investigated in young leaves of ten-day-old tomato seedlings (Lycopersicon esculentum Mill. cv. Ibiza F1). Cd was found to be mainly accumulated in roots, but a severe inhibition of biomass production occurred in leaves, even at its low concentration (1.0 μM). Seven days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Likewise, there was also a decline in the levels of tri-unsaturated fatty acids, such as linolenic (C18:3) and hexadecatrienoic (C16:3) acids. The linolenic acid (C18:3) decreased in monogalactosyldiacylglycerol (MGDG) and all phospholipids, while hexadecatrienoinic acid (C16:3) declined mainly in MGDG. Moreover, Cd at high concentrations (25.0 and 50.0 μM) significantly enhanced the levels of lipid peroxides. Radiolabelling experiments were carried out by laying down microdroplets of [1-14C]acetate–a major precursor of lipid biosynthesis–on attached leaves of the control and Cd-treated plants. After incubation for 1, 2, 12 and 24 h, the leaves were harvested and lipids extracted and analysed. Cd stress was found to decrease the incorporation of [1-14C]acetate in total lipids. The biosynthesis of total lipids was altered with 25.0 and 50.0 μM Cd. The decline in the incorporation of [1-14C]acetate due to Cd stress was observed in all lipid classes. There was also a substantial decline in the incorporation of [1-14C]acetate in tri-unsaturated fatty acids. The results indicate that Cd treatment induces an oxidative stress by inhibiting the chloroplastic and extrachloroplastic lipid-biosynthesis pathways as well as lipid peroxidation.  相似文献   

6.
Tomato (Lycopersicon esculentum Mill.) fruit ripening involves multiple metabolic changes resulting in softening and pigmentation. We investigated the mechanics and morphology of the enzymatically isolated cuticular membrane (CM) of cv. Ailsa Craig wild-type (wt) and nonripening mutant (nor) at three developmental stages. Cuticle thickness and degree of cutinization increased significantly from immature to fully ripe fruits for both wt and nor without differences between them. Mechanical characterization was carried out on dry and fully hydrated samples in uni-axial tension to determine their modulus of elasticity, stress, and strain at failure. Corresponding stress-strain diagrams were biphasic and showed yield for virtually all dry CM samples, while that of hydrated CM displayed considerable differences between wt and nor fruits. Concerning the mechanical properties, the CM of wt fruits was characterized by increasing stiffness and strength during fruit growth and maturation in both dry and hydrated states, whereas the CM of nor fruits was significantly less stiff and weaker at full maturity. Hydration generally caused lower moduli of elasticity and strength, while breaking strain was significantly affected only for the CM of ripe nor fruits. This plasticizing effect of water increased towards full maturity for both wt and nor, and may be related to fiber content in the CM matrix and hydration state of the cuticle. Comparative analysis of two additional wild-type tomato cultivars supported the ripening-related stiffening of the CM of Ailsa Craig wt and the altered mechanical properties of the nor mutant, as well as the plasticizing effect of water.  相似文献   

7.
Heat shock protein 70s (HSP70s) are fundamental chaperone proteins that are indispensable to most living organisms. In order to investigate the function of HSP70 and heat shock response in shrimp, a heat shock cognate (HSC70) gene of the white shrimp (Litopenaeus vannamei), containing a 1959-bp open reading frame, was cloned and characterized. The amino acid sequence, 71.5 kDa of molecular weight, shares 80–99.6% homology with 12 diverse species’ HSP70s and HSC70s. In fact, some segments of the eukaryotic HSC70 sequence, such as ATP/GTP-binding site, cytoplasmic HSP70 C-terminal sequence, and GGMP/GAP repeats, are also found in the putative shrimp HSC70. Moreover, multitissue RT-PCR was performed to assay the basal expressions of HSC70 in the heart, gill, hepatopancreas, stomach, gut, and muscle. The results demonstrate that the basal expressions of HSC70 in theses organs are similar to that of β-actin. Furthermore, quantitative real-time experiments showed that HSC70 was upregulated in hepatopancreas (4.6-fold), stomach (5.9-fold), gut (2.6-fold), and muscle (3.5-fold) but not in the heart (1.7-fold) and gill (1.6-fold) after 2 h of heat shock. Nevertheless, the HSC70 was found to be highly expressed in the heart and gill following 6 h of heat shock. This suggests that HSC70 in white shrimp possess both short-term and long-term responses to heat shock stress, indicating this HSC70 may be a heat-dependent HSC70 member. Finally, we constructed an expression vector to generate HSC70 in Escherichia coli BL21, which displayed immune cross-reactivity with mouse HSP70 antibody. In conclusion, the identification and expression of the white shrimp HSC70 gene present useful data for studying the molecular mechanism of heat shock response and the effect of heat shock proteins in shrimps’ cytoprotection. Published in Russian in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 2, pp. 265–274. The text was submitted by the authors in English.  相似文献   

8.
9.
We developed molecular diagnostic assays for the detection of Streptococcus pyogenes (GAS) and Streptococcus dysgalactiae subsp. equisimilis (SDSE), two streptococcal pathogens known to cause both pharyngitis and more invasive forms of disease in humans. Two real-time PCR assays coupled with an internal control were designed to be performed in parallel. One assay utilizes a gene target specific to GAS, and the other utilizes a gene target common to the two species. Both assays showed 2–3 orders of magnitude improved analytical sensitivity when compared to a commercially available rapid antigen test. In addition, when compared to standard culture in an analysis of 96 throat swabs, the real-time PCR assays resulted in clinical sensitivity and specificity of 91.7 and 100%, respectively. As capital equipment costs for real-time PCR can be prohibitive in smaller laboratories, the real-time PCR assays were converted to a low-density microarray format designed to function with an inexpensive photopolymerization-based non-enzymatic signal amplification (NESA™) method. S. pyogenes was successfully detected on the low-density microarray in less than 4 h from sample extraction through detection.  相似文献   

10.
Lin X  Minamisawa N  Takechi K  Zhang W  Sato H  Takio S  Tsukaya H  Takano H 《Planta》2008,228(4):601-608
ANGUSTIFOLIA (AN), a plant homolog of C-terminal binding protein, controls the polar elongation of leaf cells and the trichome-branching pattern in Arabidopsis thaliana. In the present study, degenerate PCR was used to isolate an ortholog of AN, referred to as LgAN, from larch (Larix gmelinii). The LgAN cDNA is predicted to encode a protein of 646 amino acids that shows striking sequence similarity to AN proteins from other plants. The predicted amino acid sequence has a conserved NAD-dependent 2-hydroxy acid dehydrogenase (D2-HDH) motif and a plant AN-specific LxCxE/D motif at its N-terminus, as well as a plant-specific long C-terminal region. The LgAN gene is a single-copy gene that is expressed in all larch tissues. Expression of the LgAN cDNA rescued the leaf width and trichome-branching pattern defects in the angustifolia-1 (an-1) mutant of Arabidopsis, showing that the LgAN gene has effects complementary to those of AN. These results suggest that the LgAN gene has the same function as the AN gene.  相似文献   

11.
To investigate the effects of exogenously applied brassinosteroids on the thermotolerance of plants, leaf CO2 assimilation, chlorophyll fluorescence parameters, and antioxidant enzyme metabolism were examined in tomato (Lycopersicon esculentum Mill. cv. 9021) plants with or without 24-epibrassinolide (EBR) application. Tomato plants were exposed to 40/30°C for 8 days and then returned to optimal conditions for 4 days. High temperature significantly decreased the net photosynthetic rate (P n), stomatal conductance (G s), and maximum carboxylation rate of Rubisco (V cmax), the maximum potential rate of electron transport contributed to ribulose-1,5-bisphosphate (RuBP), as well as the relative quantum efficiency of PSII photochemistry (ФPSII), photochemical quenching (q P), and increased nonphotochemical quenching (NPQ). However, only slight reversible photoinhibition occurred during heat stress. Interestingly, EBR pretreatment significantly alleviated high-temperature-induced inhibition of photosynthesis. The activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPOD), and catalase (CAT) increased during heat treatments, and these increases proved to be more significant in EBR-treated plants. EBR application also reduced total hydrogen peroxide (H2O2) and malonaldehyde (MDA) contents, while significantly increasing shoot weight following heat stress. It was concluded that EBR could alleviate the detrimental effects of high temperatures on plant growth by increasing carboxylation efficiency and enhancing antioxidant enzyme systems in leaves.  相似文献   

12.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

13.
14.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

15.
16.
The entire (e) locus of tomato (Solanum lycopersicum L.) controls leaf morphology. Dominant E and recessive e allele of the locus produce pinnate compound and complex reduced leaves. Previous research had indicated that SlIAA9, an Aux/IAA gene, was involved in tomato leaf morphology. Down-regulation of SlIAA9 gene by antisense transgenic method decreased the leaf complex of tomato and converted tomato compound leaves to simple leaves. The leaf morphology of these transgenic lines was similar with leaf morphology of tomato entire mutant. In this paper, we report that a single-base deletion mutation in the coding region of SlIAA9 gene results in tomato entire mutant phenotypes.  相似文献   

17.
18.
The dnaK and dnaJ genes, encoding heat shock proteins, were cloned from a psychrophilic bacterium, Colwellia maris. Significant homology was evident comparing DnaK and DnaJ of the psychrophilile with the counterparts of mesophilic and thermophilic bacteria. In the DnaJ protein, three conserved regions of the Hsp40 family were observed. A putative promoter similar to the sigma32 consensus sequence was found upstream of the dnaK gene. The G+C content in the 5'-untranslated region of the dnaK gene was much lower than that in the corresponding region of mesophilic bacteria. Northern-blot analysis and primer-extension analysis showed that both genes were transcribed separately as monocistronic mRNAs. Following several temperature upshifts from 10 to 26 degrees C, maximum induction of the dnaK and dnaJ mRNAs was detected at 20 degrees C, suggesting that this temperature induces the heat shock response in this bacterium. In addition, the level of the induction of the dnaJ gene was much lower than that of the dnaK gene. These findings together revealed several specific features of the heat shock response at a relatively low temperature in psychrophiles.  相似文献   

19.
20.
Summary  Eleven species comprising the Madagascan genus Vaughania are subsumed within the large pantropical genus Indigofera. Six new combinations are made; the remaining species were originally described in Indigofera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号