首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nam HJ  Kim S  Lee MW  Lee BS  Hara T  Saya H  Cho H  Lee JH 《Cellular signalling》2008,20(7):1349-1358
Growth factors accelerate G0 to S progression in the cell cycle, however, the roles of growth factors in other cell cycle phases are largely unknown. Here, we show that treatment of HeLa cells with hepatocyte growth factor (HGF) at G2 phase induced the G2/M transition delay as evidenced by FACS analysis as well as by mitotic index and time-lapse analyses. Growth factors such as epidermal growth factor (EGF) and fibroblast growth factor (FGF) also induced G2/M transition delay like HGF. HGF treatment at G2 phase causes a delayed activation of cyclin B1-associated kinase and a diminished nuclear translocation of cyclin B1. Either U0126, a MAPK kinase (MEK) inhibitor, or kinase-dead mutant of ribosomal S6 kinase (RSK) abolished the delay. Additionally, knockdown of RSK1, but not RSK2, with siRNA abrogated the delay, indicating that the extracellular-regulated protein kinase (ERK)-RSK1 mediates the HGF-induced delay. We further found that the delay in G2/M transition of cells expressing oncogenic HGF receptor, M1268T, was abolished by RSK1 knockdown. Intriguingly, we observed that HGF induced chromosomal segregation defects, and depletion of RSK1, but not RSK2, aggravated these chromosomal aberrations. Taken together, the ERK-RSK1 activation by growth factors delays G2/M transition and this might be required to maintain genomic integrity during growth factor stimulation.  相似文献   

2.
The effect of growth factors on the cell cycle progression, except G1/S transition, is poorly understood. Herein, we examined the effect of hepatocyte growth factor (HGF) treated at S phase on the cell cycle progression of HeLa cells. Interestingly, the treatment resulted in G2 delay, evidenced by flow cytometric and mitotic index analyses. The delay corresponded with the delay of degradation of cyclin A and cyclin B, and the delay of decrease of Cdk1/cyclin B and Cdk2/cyclin A kinase activities. As for the signaling responsible, sustained activation of ERK, but neither of p38MAPK nor of JNK, was observed after HGF treatment at S phase. Furthermore, U0126, an inhibitor of MEK1, and DN-MEK partially abrogated the G2 delay, indicating that activation of MEK-ERK pathway is involved. Taken together, HGF treatment of HeLa cells at S phase induces G2 delay partially through sustained activation of ERK signaling.  相似文献   

3.
Several growth factors play an important role in liver regeneration. Once hepatic injury occurs, liver regeneration is stimulated by hepatocyte growth factor (HGF), transforming growth factor (TGF)-alpha, and heparin-binding epidermal growth factor-like growth factor (HB-EGF), whereas TGF-beta1 terminates liver regeneration. In this study, we analyzed the effect of a combination of HGF and epidermal growth factor (EGF) on mitogen-activated protein kinase (MAPK) activity and G1 cyclin expression in primary cultured rat hepatocytes. Treatment with a combination of HGF and EGF, in comparison with that of either HGF or EGF, induced tyrosine phosphorylation of both c-Met and EGF receptor (EGFR) independently and additively stimulated MAPK activity and cyclin D1 expression, resulting in additive stimulation of DNA synthesis. On the other hand, although TGF-beta1 treatment did not affect tyrosine phosphorylation of c-Met and EGFR, MAPK activity, and cyclin D1 expression, which were stimulated by HGF and EGF, DNA synthesis was completely inhibited through a marked decrease in cyclin E expression. These results indicate that potent mitogens, such as HGF, TGF-alpha, and HB-EGF, could induce the additive enhancement of liver regeneration cooperatively through an increase in Ras/MAPK activity followed by cyclin D1 expression, and that TGF-beta1 suppresses the growth factor-induced signals between cyclin D1 and cyclin E, resulting in the inhibition of DNA synthesis.  相似文献   

4.
5.
Signaling through the target of rapamycin is required for increased protein synthesis, cell growth, and proliferation in response to growth factors. However, the downstream mediators of these responses, and the elements linking growth and proliferation, have not been fully elucidated. Rapamycin inhibits hepatocyte proliferation in culture and liver regeneration in vivo. In cultured rat hepatocytes, rapamycin prevented the up-regulation of cyclin D1 as well as proteins acting downstream in the cell cycle. Transfection with cyclin D1 or E2F2, but not cyclin E or activated Akt, overcame the rapamycin-mediated cell cycle arrest. Rapamycin also inhibited the induction of global protein synthesis after growth factor stimulation, and cyclin D1 overcame this inhibition. Rapamycin inhibited hepatocyte proliferation and cyclin D1 expression in the mouse liver after 70% partial hepatectomy. In rapamycin-treated mice, transfection with cyclin D1 induced hepatocyte proliferation, increased hepatocyte cell size, and promoted growth of the liver. These results suggest that cyclin D1 is a key mediator of increased protein synthesis, cell growth, and proliferation downstream of target of rapamycin in mitogen-stimulated hepatocytes.  相似文献   

6.
Lim HK  Kang HK  Yoo ES  Kim BJ  Kim YW  Cho M  Lee JH  Lee YS  Chung MH  Hyun JW 《Life sciences》2003,72(12):1389-1399
The cytotoxic activity of oxysterols, 7 beta-hydroxycholesterol (7 beta-OHC) and 25-hydroxycholesterol (25-OHC), has been evaluated using various leukemia cell lines. Among the tested cell lines, both oxysterols showed the highest cytotoxicity to THP-1, human monocytic leukemia cell line. These oxysterols induced apoptosis through down-regulation of Bcl-2 expression and activation of caspases. Also, the oxysterols showed the accumulation at G(2)/M phase of cell cycle through down-regulation of cyclin B1 expression. Taken together, these results indicated that both 7 beta-OHC and 25-OHC inhibited the proliferation of THP-1 cells through apoptosis and cell cycle accumulation at G(2)/M phase.  相似文献   

7.
8.
9.
Hepatocyte growth factor, which is a potent growth factor for primary cultured adult hepatocytes, strongly stimulated DNA synthesis of rat fetal (20-day of gestation) hepatocytes. Its mitogenic capacity, measured as (3H)-thymidine incorporation into acid precipitable material was dose dependent, being detectable at 1 ng/ml and maximal at 5 ng/ml. Over 15% of the cells entered into S-phase and mitosis as judged by flow cytometric analysis of the cell cycle. HGF had additive effects with transforming growth factor-alpha, whereas transforming growth factor-beta strongly inhibited DNA synthesis of fetal hepatocytes stimulated by HGF. HGF induced c-fos and c-myc expression in a time-dependent manner, with a maximum at 30 min for c-fos and 8 h for c-myc. These results suggest that HGF may act as a proliferative factor during fetal liver growth.  相似文献   

10.
Smooth muscle cell proliferation after arterial injury is regulated by growth factors and components of the extracellular matrix. We have previously demonstrated that fibronectin promotes a phenotypic modulation of freshly isolated rat smooth muscle cells from a contractile to a synthetic phenotype in primary culture and supports the ability of the cells to respond to growth factors. Here, we analyzed if fibronectin promotes cell cycle entry in freshly isolated rat aortic smooth muscle cells during primary culture. Cell cycle analysis showed that cells seeded on fibronectin remained in the G(0)/G(1) phase of the cell cycle during the first 6 days of culture. During this period, there was an increased expression of cyclin D1 and p27(KIP1) in the absence of exogenous growth factors. Addition of serum was followed by enhanced cyclin D1 expression, decreased p27(KIP1) levels, hyperphosphorylation of Rb protein, induction of cyclin A and cyclin D3 expression, and cell cycle progression into S phase. The results indicate that fibronectin initiates cell cycle entry in freshly isolated smooth muscle cells by promoting the induction of cyclin D1 and thereby facilitates further cell cycle progression together with growth factors.  相似文献   

11.
BACKGROUND: In a previous work, we demonstrated with flow cytometry (FCM) methods that accumulation of human cyclin B1 in leukemic cell lines begins during the G(1) phase of the cell cycle (Viallard et al. , Exp Cell Res 247:208-219, 1999). In the present study, FCM was used to compare the localization and the kinetic patterns of cyclin B1 expression in Jurkat leukemia cell line and phytohemagglutinin (PHA)-stimulated normal T lymphocytes. METHODS: Cell synchronization was performed in G(1) with sodium n-butyrate, at the G(1)/S transition with thymidine and at mitosis with colchicine. Cells (leukemic cell line Jurkat or PHA-stimulated human T-lymphocytes) were stained for DNA and cyclin B1 and analyzed by FCM. Western blotting was used to confirm certain results. RESULTS: Under asynchronous growing conditions and for both cell populations, cyclin B1 expression was essentially restricted to the G(2)/M transition, reaching its maximal level at mitosis. When the cells were synchronized at the G(1)/S boundary by thymidine or inside the G(1) phase by sodium n-butyrate, Jurkat cells accumulated cyclin B1 in both situations, whereas T lymphocytes expressed cyclin B1 only during the thymidine block. The cyclin B1 fluorescence kinetics of PHA-stimulated T lymphocytes was strictly similar when considering T lymphocytes blocked at the G(1)/S phase transition by thymidine and in exponentially growing conditions. These FCM results were confirmed by Western blotting. The detection of cyclin B1 by Western blot in cells sorted in the G(1) phase of the cell cycle showed that cyclin B1 was present in the G(1) phase in leukemic T cells but not in normal T lymphocytes. Cyclin B1 degradation was effective at mitosis, thus ruling out a defective cyclin B1 proteolysis. CONCLUSIONS: We found that the leukemic T cells behaved quite differently from the untransformed T lymphocytes. Our data support the notion that human cyclin B1 is present in the G(1) phase of the cell cycle in leukemic T cells but not in normal T lymphocytes. Therefore, the restriction point from which cyclin B1 can be detected is different in the two models studied. We hypothesize that after passage through a restriction point differing in T lymphocytes and in leukemic cells, the rate of cyclin B1 synthesis becomes constant in the S and G(2)/M phases and independent from the DNA replication cycle.  相似文献   

12.
13.
Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes.   总被引:12,自引:0,他引:12  
Cyclin D1 is widely believed to regulate progression through G1 phase of the cell cycle, and previous studies have shown that this protein is induced during hepatocyte proliferation in culture and in vivo. In this study, the role of cyclin D1 in the cell cycle of primary rat hepatocytes was further examined. Following epidermal growth factor stimulation, cyclin D1 was upregulated at time points corresponding to the mitogen restriction point, and this was associated with enhanced cyclin D1-associated kinase activity. To test whether cyclin D1 expression was sufficient to promote mitogen-independent progression through the G1-S transition, we constructed a replication-defective adenovirus that overexpressed human cyclin D1. Transfection with the cyclin D1 vector but not a control vector resulted in hepatocyte DNA synthesis in the absence of growth factor that was similar to that seen in mitogen-treated cells. Furthermore, cyclin D1 transfection led to activation of downstream biochemical events, including cyclin A and proliferating cell nuclear antigen expression and cyclin E- and cyclin A-associated kinase activation. These results suggest that cyclin D1 expression is sufficient to promote progression of hepatocytes through the G1 restriction point.  相似文献   

14.
15.
Summary Ethanolamine (Etn) stimulates hepatocyte proliferation in vivo and in vitro; however, the physiological function of Etn in hepatocytes has yet to be elucidated. In the present study, we examined the effect of Etn using a primary culture of rat hepatocytes. The level of membrane phosphatidylethanolamine (PE) significantly decreased when the hepatocytes were cultured without Etn but increased to the level found in the liver when the culture medium was supplemented with 20–50 μM Etn. Moreover, Etn stimulated DNA synthesis in a dose-dependent manner and had a synergistic effect with epidermal growth factor (EGF). A binding assay and Western blotting showed that the number of EGF receptors was 22–30% lower in cells grown in the absence of Etn compared to those grown in its presence, but the respective Kd values were almost the same. Furthermore, tyrosine phosphorylation of the EGF receptor was significantly lower in cells grown without Etn. Phosphatidylcholine (PC) synthesis in the liver is unique in that it occurs via stepwise methylation of PE. We found that without Etn supplementation, bezafibrate-induced inhibition of PE methylation increased the level of PE by decreasing its conversion to PC and stimulated DNA synthesis. Moreover, the function of EGF in stimulating DNA synthesis was significantly enhanced under Etn-sufficient conditions. These data suggest that Etn is a nutritional factor required for synthesis of adequate PE, levels of which are important for hepatocyte proliferation.  相似文献   

16.
Liver regeneration is controlled by multiple signaling pathways induced by a variety of growth factors, hormones, and cytokines. Here we report that protein kinase B (PKB)/Akt, part of a key cell survival signaling pathway, is markedly activated after partial hepatectomy (PHX). The antiapoptotic protein Bad, a downstream target of PKB/Akt, is also phosphorylated. This cascade can be activated by various factors in primary hepatocytes, with the strongest activation by insulin and the alpha1-adrenergic agonist phenylephrine (PE), followed by IL-6, epidermal growth factor (EGF), and hepatocyte growth factor (HGF). Pretreatment of cells with the specific PI3 kinase inhibitor LY294002 abolished insulin- or PE-activation of PKB/Akt, suggesting that activation of PKB/Akt is mediated by a PI3 kinase-dependent mechanism. In vivo administration of PE, insulin, IL-6, HGF, or EGF to mice markedly stimulated PKB/Akt in the liver, with the strongest stimulation induced by insulin and PE. Moreover, HGF and insulin were able to attenuate transforming growth factor beta-induced apoptosis in hepatic cells, and these effects were antagonized by LY294002. Taken together, these findings suggest that rapid activation of PKB/Akt is a key antiapoptotic signaling pathway involved in liver regeneration.  相似文献   

17.
Endocannabinoids (ECs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), inhibit proliferation of carcinoma cells. Several enzymes hydrolyze ECs to reduce endogenous EC concentrations and produce eicosanoids that promote cell growth. In this study, we determined the effects of EC hydrolysis inhibitors and a putative EC, 2-arachidonylglyceryl ether (noladin ether, NE) on proliferation of prostate carcinoma (PC-3, DU-145, and LNCaP) cells. PC-3 cells had the least specific hydrolysis activity for AEA and administration of AEA effectively inhibited cell proliferation. The proliferation inhibition was blocked by SR141716A (a selective CB1R antagonist) but not SR144528 (a selective CB2R antagonist), suggesting a CB1R-mediated inhibition mechanism. On the other hand, specific hydrolysis activity for 2-AG was high and 2-AG inhibited proliferation only in the presence of EC hydrolysis inhibitors. NE inhibited proliferation in a concentration-dependent manner; however, SR141716A, SR144528 and pertussis toxin did not block the NE-inhibited proliferation, suggesting a CBR-independent mechanism of NE. A peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662 did not block the NE-inhibited proliferation, suggesting that PPARγ was not involved. NE also induced cell cycle arrest in G(0)/G(1) phase in PC-3 cells. NE inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB p65) and down-regulated the expression of cyclin D1 and cyclin E in PC-3 cells, suggesting the NF-κB/cyclin D and cyclin E pathways are involved in the arrest of G1 cell cycle and inhibition of cell growth. These results indicate therapeutic potentials of EC hydrolysis inhibitors and the enzymatically stable NE in prostate cancer.  相似文献   

18.
Growth factors and cell anchorage jointly regulate transit through G1 in almost all cell types, but the cell cycle basis for this combined requirement remains largely uncharacterized. We show here that cell adhesion and growth factors jointly regulate the cyclin D1- and E- dependent kinases. Adhesion to substratum regulates both the induction and translation of cyclin D1 mRNA. Nonadherent cells fail to phosphorylate the retinoblastoma protein (Rb), and enforced expression of cyclin D1 rescues Rb phosphorylation and entry into S phase when G1 cells are cultured in the absence of substratum. Nonadherent cells also fail to activate the cyclin E-associated kinase, and this effect can be linked to an increased association of the cdk inhibitors, p21 and p27. These data describe a striking convergence in the cell cycle controls used by the two major signal transduction systems responsible for normal and abnormal cell growth. Taken together with our previous studies showing adhesion-dependent expression of cyclin A, they also establish the cell cycle basis for explaining the combined requirement for growth factors and the extracellular matrix in transit through the Rb checkpoint, entry into S phase, and anchorage-dependent growth.  相似文献   

19.
Transforming growth factor beta (TGF-beta) potently suppresses Mv1Lu mink epithelial cell growth, whereas hepatocyte growth factor (HGF) counteracts TGF-beta-mediated growth inhibition and induces Mv1Lu cell proliferation (J. Taipale and J. Keski-Oja, J. Biol. Chem. 271:4342-4348, 1996). By addressing the cell cycle regulatory mechanisms involved in HGF-mediated release of Mv1Lu cells from TGF-beta inhibition, we show that increased DNA replication is accompanied by phosphorylation of the retinoblastoma protein and alternative regulation of cyclin-Cdk-inhibitor complexes. While TGF-beta treatment decreased the expression of Cdk6, this effect was counteracted by HGF, followed by partial restoration of cyclin D2-associated kinase activity. Notably, HGF failed to prevent TGF-beta induction of p15 and its association with Cdk6. However, HGF reversed the TGF-beta-mediated decrease in Cdk6-associated p27 and cyclin D2-associated Cdk6, suggesting that HGF modifies the TGF-beta response at the level of G1 cyclin complex formation. Counteraction of TGF-beta regulation of Cdk6 by HGF may in turn affect the association of p27 with Cdk2-cyclin E complexes. Though HGF did not differentially regulate the total levels of p27 in TGF-beta-treated cells, p27 immunodepletion experiments suggested that upon treatment with both growth factors, less p27 is associated with Cdk2-cyclin E complexes, in parallel with restoration of the active form of Cdk2 and the associated kinase activity. The results demonstrate that HGF intercepts TGF-beta cell cycle regulation at multiple points, affecting both G1 and G1-S cyclin kinase activities.  相似文献   

20.
Activated Jak2 with the V617F point mutation promotes G1/S phase transition   总被引:1,自引:0,他引:1  
Hematopoietic stem cells in myeloproliferative diseases mostly retain the potential to differentiate but are characterized by hyper-responsiveness to growth factors, as well as partial factor-independent growth. The V617F activating point mutation in Jak2 has recently been associated with myeloproliferative disorders. Using various cell line models, mechanisms that contribute to Jak2V617-mediated signaling were investigated. Treatment of the Jak2V617F mutant-expressing erythroid leukemia cell line HEL with a small molecule Jak2 inhibitor was associated with a dose-dependent G(1) cell cycle arrest. This inhibition correlated with decreased expression of cyclin D2 and increased expression of the cell cycle inhibitor p27(Kip). Inhibition of Jak2V617F with a Jak2-targeted small interfering RNA approach resulted in a similar phenotype. Mechanisms leading to altered p27(Kip) and cyclin D2 likely involve inhibition of STAT5, a major target of Jak2 in hematopoietic cells, because a constitutively active form of STAT5 reduced p27(Kip) and increased cyclin D2 expression. Jak2V617F and constitutively active STAT5 also induced high levels of reactive oxygen species, which are sufficient to promote G(1)/S phase transition. In contrast, treatment of HEL cells with the antioxidant N-acetylcysteine decreased cell growth or expression of cyclin D2 and increased expression of p27(Kip). Similar results were obtained in BaF3 cells transfected with Jak2V617F, but these cells required coexpression of the erythropoietin receptor for optimal signaling. These results suggest that regulation of cyclin D2 and p27(Kip) in combination with redox-dependent processes promotes G(1)/S phase transition downstream of Jak2V617F/STAT5 and therefore hint at potential novel targets for drug development that may aid traditional therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号