首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermophilic eubacterium Rhodothermus marinus was cultivated in a fermentor and studied with respect to activities of induced xylanolytic enzymes. Growth in the fermentor on xylan occurred with a maximum specific growth rate of 0.43 h–1 for a batch culture. The final cell concentration was 4 g cell dry weight (CDW)/l for cells grown on xylan compared to 2 g CDW/l for cells grown without xylan in the cultivation medium. At least two xylanolytic enzymes, endo-1,4--xylanase and xylan 1,4--xylosidase, were secreted into the culture medium when cells were cultivated on xylan. Of the three cellulolytic enzymes tested for activity, -glucosidase activity was in the range of the xylanolytic enzyme activities whereas cellulose-1,4--cellobiosidase and cellulase activities were hardly detectable. The expression of endo-1,4--xylanase activities during cultivation indicates the existance of more than one xylanase in R. marinus. This is also observed in fractions from gel filtration. The xylanolytic enzymes are heat-stable. At 90°C and at pH 7.0 the half-life of the endo-1,4--xylanase was about 14 h and that of xylan 1,4--xylosidase was 45 min. Correspondence to: L. Dahlberg  相似文献   

2.
Cellulose- and xylan-degrading enzymes of Trichoderma reesei QM 9414 induced by, sophorose, xylobiose, cellulose and xylan were analyzed by isoelectric focusing. The sophorose-induced enzyme system contained two types of endo-1,4--glucanases (EC 3.2.1.4), one specific for cellulose and the other non-specific, hydrolyzing both cellulose and xylan, and exo-1,4--glucanases (cellobiohydrolases I, EC 3.2.1.91), i.e. all types of glucanases that are produced during growth on cellulose. Specific endo-1,4--xylanases (EC 3.2.1.8) present in the cellulose-containing medium were less abundant in the sophorose-induced enzyme system. Xylobiose and xylan induced only specific endo-1,4--xylanases. It is concluded that syntheses of cellulases and -xylanases in T. reesei QM 9414 are under separate control and that the non-specific endo-1,4--glucanases are constituents of the cellulose-degrading enzyme system.  相似文献   

3.
The induction of synthesis of the secreted enzymes endo-1,4--xylanase (EC 3.2.1.8) and -galactosidase (EC 3.2.1.23) in original and recombinant Penicillium canescens strains has been studied. In all producer strains, the synthesis of these enzymes was induced by arabinose and its metabolite arabitol. The two enzymes differed in the concentration of arabinose required for induction: the synthesis of -galactosidase was most pronounced at 1 mM, whereas maximum synthesis of endo-1,4--xylanase was observed at 5–10 mM. An increase in the number of endo-1,4--xylanase copies in the high-copy-number strain of the fungus suppressed the synthesis of -galactosidase; the synthesis of endo-1,4--xylanase in the high-copy-number recombinant producing -galactosidase was affected to a lesser extent. The amount of enzymes synthesized did not depend on the saccharide used as the sole source of carbon for growing the mycelium prior to its transfer to the inducer-containing medium.  相似文献   

4.
Xylanases from fungi: properties and industrial applications   总被引:23,自引:0,他引:23  
Xylan is the principal type of hemicellulose. It is a linear polymer of -D-xylopyranosyl units linked by (1–4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl--D-glucuronopyranosyl units, acetyl groups, -L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4--xylanase and -xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.  相似文献   

5.
The specificity of induction of cellulose- and xylan-degrading enzymes was investigated on the yeast strain Trichosporon cutaneum CCY 30-5-4 using series of compounds structurally related to cellulose and xylan, including monosaccharides, glycosides, glucooligosaccharides and xylooligosaccharides. Determination of activities of secreted cellulase and -xylanase, intracellular, cell wall bound and extracellular -glucosidase and -xylosidase revealed that: (1) The synthesis of xylan-degrading enzymes is induced in the cell only by xylosaccharides, 1,3--xylobiose, 1,2--xylobiose, 1,4--xylosyl-L-arabinose, 1,4--xylobiose and thioxylobiose being the best inducers. The xylan-degrading enzymes show different pattern of development in time and discrete cellular localization, i.e. intracellular -xylosidase precedes extracellular -xylanase. (2) A true cellulase is not inducible by glucosaccharides and cellulose. Negligible constitutive cellulase activity was detected which was about two orders lower than an induced cellulase in the typical cellulolytic fungus Trichoderma reesei QM 9414. (3) The best inducer of intracellular -glucosidase splitting cellobiose was thiocellobiose in a wide range of concentration (0.1–10 mM), whereas xylosaccharides at high concentrations induced -xylosidase of xylobiose type and a non-specific aryl -D-glucosidase.The results were confirmed by growing cells on cellulose and xylan. T. cutaneum was found to be a xylan-voracious yeast, unable to grow on cellulose.  相似文献   

6.
Screening of 40 mesophilic and 13 thermophilic fungi indicated that enzyme activities capable of degrading oat spelt xylan extensively were produced by only a few of the mesophilic species investigated. The relatively low degree of hydrolysis effected by the enzymes from thermophilic organisms could be explained, in part, by their lack of -xylosidase. Several strains of Aspergillus awamori and Aspergillus phoenicis were notable in producing high xylanase and -xylosidase and low protease activities. Of the fungl tested, 13 produced activities capable of removing O-acetyl, arabinosyl, 4-O-methylglucuronyl, feruloyl and coumaroyl substituents from the backbone of xylan polysaccharides as well as endo-1,4--d-xylanase and -1,4-xylosidase. When the growth medium contained oat spelt xylan as carbon source, higher levels of xylanase, -xylosidase and acetyl xylan esterase were found than in cultures containing meadow fescue grass but the latter were richer in ferulic acid and coumaric acid esterases and 4-O-methylglucuronidase. No single organism or carbon source used was capabie of producing high levels of all the debranching enzymes as well as high levels of enzymes capable of cleaving the glycosidic linkages of the xylan backbone. The best ballnce of enzymes was obtained in cultures of A. awamori IMI 142717 and NRRL 2276 and A. phoenicis IMI 214827. Either of these would be suitable for strain improvement studies.The authors are with The Rowett Research Institute. Bucksburn, Aberdeen, AB2 9SB, UK.T.M. Wood is the corresponding author.  相似文献   

7.
1,4 galactosyltransferase 1 ( 1,4GT1) synthesizes Gal 14GlcNAc groups in N-linked sugar chains of animal glycoproteins, which have been demonstrated to play an important role in many biological events, including sperm-egg interaction, cell migration and mammalian embryonic development. In this study, the mRNA level of 1,4GT1 was found to increase greatly during the 7721 hepatocarcinoma cells apoptosis induced by cycloheximide. Ricinus Communis Agglutinin-I staining indicated generous increase of Gal 14GlcNAc groups during apoptosis. Further study showed that the 7721 hepatocarcinoma cells transiently transfected with 1,4GT1 were more susceptible to the apoptosis induced by cycloheximide. The increased susceptibility was in accordance to the transfection concentration of 1,4GT1, which also led to the increased Gal 14GlcNAc groups on the transfected cell surface. All the observations suggested that 1,4GT1 and Gal 14GlcNAc groups might be associated with the apoptosis of human hepatocarcinoma cells.  相似文献   

8.
A Bacillus brevis gene coding for an endo-(1,3–1,4)--glucanase was cloned in Escherichia coli and sequenced. The open reading frame contains a sequence of 759 nucleotides encoding a polypeptide of 252 amino acid residues. The amino acid sequence of the -glucanase gene showed only a 50% similarity to previously published data for Bacillus endo-(1,3–1,4)--glucanases. The optimum temperature and pH for enzyme activity were 65–70°C and 8–10, respectively. When held at 75°C for 1 h, 75% residual activity was measured. The molecular mass was estimated to be about 29 kDa on sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis and the enzyme was found to be resistant to SDS. Correspondence to: T. G. Watson  相似文献   

9.
Imidazole fungicides such as imazalil, prochloraz, and triflurnizole and the triazole growth retardant paclobutrazol promote the shoot-inducing effect of exogenous cytokinins in Araceae, such as Spathiphyllum floribundum Schott and Anthurium andreanum Schott. The mechanism of their action could partially be based on the inhibition of gibberellic acid (GA) biosynthesis, because administration of GA3 inhibits the phenomenon completely in S. floribundum. Not only is the suppression of GA biosynthesis involved, but also the metabolism of endogenous cytokinins is significantly altered. Although the balance between isopentenyladenine, zeatin, dihydrozeatin, and their derivatives was shifted to distinguished directions by administration of BA and/or imazalil and/or GA3, no correlation between these changes in metabolic pathways and the number of shoots could be found. The metabolism of BA was not significantly altered by adding imazalil to the micropropagation medium of S. floribundum.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - [9R-5P]DHZ 9--d-ribofuranosyl-dihydrozeatin-monophosphate - [9R-5P]iP 6-isopentenyl-9--d-ribofuranosyladenine-monophosphate - [9R-5P]Z 9--d-ribofuranosyl-zeatin-monophosphate - [9G]BA 6-benzyl-9--d-glucopyranosyladenine - [9G]DHZ 9--d-glucopyranosyl-dihydrozeatin - [9G]iP 6-isopentenyl-9--d-glucopyranosyladenine - [9G]Z 9--d-glucopyranosyl-zeatin - [9R]BA 6-benzyl-9--d-ribofuranosyladenine - [9R]DHZ 9--d-ribofuranosyl-dihydrozeatin - [9R]iP 6-isopentenyl-9--d-ribofuranosyladenine - [9R]Z 9--d-ribofuranosyl-zeatin - BA 6-benzyladenine - DHZ dihydrozeatin - ES+ LC-MS/MS HPLC coupled Electrospray Tandem Mass Spectrometry - f.m. fresh mass - mT 6-(3-hydroxybenzyl)adenine - IMA imazalil - iP isopentenyladenine - NAA 1-naphthalene acetic acid - NFT Nutrient Film Technique - (OG)[9R]DHZ O--glucopyranosyl-9--d-ribofuranosyl-dihydrozeatin - (OG)[9R]Z O--d-glucopyranosyl-9--d-ribofuranosyl-zeatin - (OG)DHZ O--d-glucopyranosyl-dihydrozeatin - (OG)Z O--d-glucopyranosyl-zeatin - PAR Photosynthetic Active Radiation - PBZ paclobutrazol - PRO prochloraz - TDZ thidiazuron - TRI triflurnizole - Z zeatin  相似文献   

10.
Aureobasidium pullulans grew well in media containing glucose, fructose, xylan or xylose but -xylanase was only produced with xylan or xylose. Lactose and maltose were poor substrates for growth. -Xylanase production was repressed in media containing glucose or fructose along with xylose. Agricultural residues, such as wheat bran, paddy husk and rice straw, could be used as carbon sources for growth and -xylanase production of Aureobasidium pullulans. Tween 80 at 0.5% (v/v) increased the yield of -xylanase by up to 20%.  相似文献   

11.
One hundred and sixty two actinomycete strains isolated from Brazilian soils were screened for xylanase activity, according to the size of the hydrolysis zones observed in oat spelts xylan agar plates. The strain AMT-3, later identified as Streptomyces malaysiensis, was selected as the best producer. In subsequent shake flasks fermentations using growth media contanning 1% (w/v) of either birchwood, or oat spelts xylan, plus organic nitrogen and salts, high endo--1,4-xylanase titres (EC 3.2.1.8) (116 U ml–1) were observed in the larchwood medium within 6 days. This is the first report concerning xylanase production by streptomyces malaysiensis, which has been recently described as a new species.  相似文献   

12.
A Gal1-4GlcNAc (2-6)-sialyltransferase from human liver was purified 34 340-fold with 18% yield by dye chromatography on Cibacron Blue F3GA and cation exchange FPLC. The enzyme preparation was free of other sialyltransferases. It did not contain CMP-NeuAc hydrolase, protease, or sialidase activity, and was stable at –20°C for at least eight months. The donor substrate specificity was examined with CMP-NeuAc analogues modified at C-5 or C-9 of theN-acetylneuraminic acid moiety. Affinity of the human enzyme for parent CMP-NeuAc and each CMP-NeuAc analogue was substantially higher than the corresponding Gal1-4GlcNAc (2-6)-sialyltransferase from rat liver.Abbreviations FPLC fast protein liquid chromatography - NeuAc 5-N-acetyl-d-neuraminic acid - 9-amino-NeuAc 5-acetamido-9-amino-3,5,9-trideoxy-d-glycero-2-nonulosonic acid - 9-acetamido-NeuAc 5,9-diacetamido-3,5,9-trideoxy-d-glycero--d-2-nonulosonic acid - 9-benzamido-NeuAc 5-acetamido-9-benzamido-3,5,9-trideoxy-d-glycero--d-galacto-2-nonulosonic acid - 9-fluoresceinyl-NeuAc 9-fluoresceinylthioureido-NeuAc - 5-formyl-Neu 5-formyl--d-neuraminic acid - 5-aminoacetyl-Neu 5-aminoacetyl--d-neuraminic acid - CMP-NeuAc cytidine-5-monophospho-N-acetylneuraminic acid - GM1 Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc-ceramide - ST sialyltransferase - DTE 1,4-dithioerythritol Enzyme: Gal1-4GlcNAc (2-6)-sialyltransferase, EC 2.4.99.1.  相似文献   

13.
Cinnamomin is a plant type II ribosome-inactivating protein (RIP) isolated from the seeds of Cinnamomum camphora. It consists of two nonidentical polypeptide chains (A- and B-chain) held together through one disulfide linkage. Its A- and B-chain contain 0.3% and 3.9% sugars respectively. The B-chain of cinnamomin was digested by pronase E and then the liberated glycopeptides were separated from non-glycopeptides by gel filtration chromatography on a Bio-Gel P-4 column. Three crude glycopeptides were obtained by continuing chromatography over anion-exchange resin (AG1-X2) in the buffer of 2% pyridine-acetic acid (pH 8.3) with a polygradient elution system. Through further purification by the gel filtration chromatography and HPLC, three major glycopeptides, GP1, GP2 and GP3 were obtained. Mainly by two-dimensional Nuclear Magnetic Resonance (NMR) including TOCSY, DQF-COSY, NOESY, HMQC and HMBC, their primary structures were analyzed as: Man1,3Man1,6(Man1,3)(Xyl1,2)Man1,4GlcNAc1,4GlcNAc1-(Gly-)Asn-Asn-Thr(GP1), Man1,6(Man1,3)(Xyl1,2)Man1,4GlcNAc1,4(Fuc1,3)GlcNAc1-Asn-Ala-Thr(GP2),Man1,6(Man1,3)Man1,6(Man1,2 Man1,3)Man1,4GlcNAc1,4GlcNAc1-(Ala-)Asn-Gly-Thr(GP3).  相似文献   

14.
Mixed membrane preparations from the coleoptiles and first leaves of young barley (Hordeum vulgare L. cv. Triumph) plants catalysed the synthesis of 55% methanol-insoluble labelled material from UDP[U-14C]glucose, the main components of which were identified as (1,3)(1,4)-- and (1,3)--D-glucans. The membrane preparations also catalysed the transformation of UDP-glucose into labelled low-molecular-weight products, mainly glucose (by phosphatase action), glucose-1-phosphate (by phosphodiesterase action) and glyco(phospho)lipids (by glycosyltransferase action). The formation of (1,3)(1,4)--glucans, (1,3)--glucans, and the other reactions competing for UDP-glucose, were monitored simultaneously and quantitatively by a novel procedure based on enzymatic analysis, thin-layer chromatography and digital autoradiography. Thus it was possible (i) to optimise conditions to obtain (1,3)(1,4)--glucan synthesis or (1,3)--glucan synthesis in isolation, and (ii) to study the influence of temperature, pH, cofactors, substrate concentration etc. on the (1,3)(1,4) and (1,3)--glucan synthesis reactions even when both occurred together. The synthesis of both -glucans was optimal at 20°C. In Tris-HCl buffer, the pH optima for (1,3)(1,4)--glucan synthesis and (1,3)--glucan synthesis were pH 8.5 and pH 7.0, respectively. Both glucan-synthesis reactions required Mg2+: (1,3)--glucan synthesis was optimal at 2 mM, whereas (1,3)(1,4)--glucan synthesis continued to increase up to 200 mM Mg2+, when the ion was supplied as the sulphate. (1,3)--Glucan synthesis was Ca2+ dependent and this dependence could be abolished by proteinase treatment. The K m with respect to UDP-glucose was 1.5 mM for (1,3)--glucan synthesis and approximately 1 mM for (1,3)(1,4)--glucan synthesis. The (1,3)(1,4)--glucan formed in vitro had the same ratio of trisaccharide to tetrasaccharide structural blocks irrespective of the experimental conditions used during the synthesis: its enzymatic fragmentation pattern was indistinguishable from that of barley endosperm (1,3)(1,4)--glucan. This indicates either a single synthase enzyme, which is responsible for the formation of both linkage types, or two enzymes which are very tightly coupled functionally.Abbreviations G4G4G3G Glc(1,4)Glc(1,4)Glc(1,3)Glc (-linked) - UDP-Glc uridine-5-diphosphate glucose We are grateful to the Commission of the European Communities for the award of Training Fellowships to Christine Vincent and Martin Becker.  相似文献   

15.
The location of the (13)--glucan, callose, in the walls of pollen tubes in the style of Nicotiana alata Link et Otto was studied using specific monoclonal antibodies. The antibodies were raised against a laminarinhaemocyanin conjugate. One antibody selected for further characterization was specific for (13)--glucans and showed no binding activity against either a cellopentaose-bovine serum albumin (BSA) conjugate or a (13, 14)--glucan-BSA conjugate. Binding was inhibited by (13)--oligoglucosides (DP, 3–6) with maximum competition being shown by laminaripentaose and laminarihexaose, indicating that the epitope included at least five (13)--linked glucopyranose residues. The monoclonal antibody was determined to have an affinity constant for laminarihexaose of 2.7. 104M–1. When used with a second-stage gold-labelled, rabbit anti-mouse antibody, the monoclonal antibody probe specifically located the (13)--glucan in the inner wall layer of thin sections of the N. alata pollen tubes.Abbreviations BSA bovine serum albumin - PBS phosphate-buffered saline - ELISA enzyme linked immunosorbent assay - DP degree of polymerization - PVC polyvinyl chloride P.J.M. is an Australian Postdoctoral Research Fellow. We wish to thank Joan Hoogenraad for her technical assistance with the tissue culture, and Althea Wright for her assistance in the preparation of this paper.  相似文献   

16.
An endo-(14)--d-xylanase from Neocallimastix frontalis was purified by anion-exchange chromatography. The enzyme had an apparent molecular mass of 30 kDa on SDS-PAGE and exhibited maximum activity at 50°C and at pH values between 6.0 and 6.6. Kinetic studies on the hydrolysis of xylo-oligosaccharides, ranging from xylobiose to xylodecaose, showed that xylohexaose and xyloheptaose were the preferred substrates for the enzyme and that xylobiose, xylotriose and xylotetraose were not hydrolysed. Xylose was not a product of the hydrolysis of any of the xylo-oligosaccharide substrates tested. The enzyme appeared to have a strong preference for the hydrolysis of the internal glycosidic bonds of the oligosaccharides, which is typical of endo-(14)--d-xylanase activity, but it differed from other fungal endo-(14)--d-xylanases in that it had uniform action on the various internal linkages in the xylo-oligosaccharides.V. Garcia-Campayo, S.I. McCrae and T.M. Wood are with The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK  相似文献   

17.
P. Bucheli  M. Dürr  A. J. Buchala  H. Meier 《Planta》1985,166(4):530-536
Cotton fibres possess several -glucanase activities which appear to be associated with the cell wall, but which can be partially solubilised in buffers. The main activity detected was that of an exo-(13)--d-glucanase (EC 3.2.1.58) but which also had the characteristics of a -glucosidase (EC 3.2.1.21). Endo-(13)--d-glucanase activity (EC 3.2.1.39) and much lower levels of (14)--d-glucanase activity were also detected. The exo-(13)--glucanase showed a maximum late on (40 days post-anthesis) in the development of the fibres, whereas the endo-(13)--glucanase activity remained constant throughout fibre development. The -glucanase complex associated with the cotton-fibre cell wall also functions as a transglucosylase introducing, inter alia, (16)--glucosyl linkages into the disaccharide cellobiose to give the trisaccharide 4-O--gentiobiosylglucose.Abbreviations CMC carboxymethylcellulose - ONPG o-nitrophenyl--d-glucopyranoside - TLC thin-layer chromatography Presented at the Third Cell Wall Meeting held in Fribourg in 1984  相似文献   

18.
Summary Enzymic saccharification of Eucalyptus regnans pulps pretreated by autohydrolysis-steam explosion resulted in low cellulose conversions into glucose when using trichodermal cellulase preparations. The reduced levels of glucose were attributable to the production of compounds during enzymic hydrolysis which were inhibitory to -d-glucosidase of Trichoderma reesei C-30 and in Meicelase, but not to the cellulases. Aspergillus niger -glucosidase was not inhibited, nor were -d-xylosidase(s) and 1,4--d-xylanase(s). The inhibitory compound(s) could be extracted from the enzymic hydrolyzates with ethyl acetate. The ethyl acetate extractives inhibited -glucosidase in a competitive manner, and inhibitory action was not affected by pH. Addition of the inhibitory compound(s) to trichodermal cellulase digests of cellulose resulted in reduced glucose yields compared to a control. The inhibitory effects could be overcome when cellulase digests were supplemented with A. niger -glucosidase resulting in higher cellulose-to-glucose conversions. The inhibitory compound(s) were localized mainly in the heartwood of E. regnans. An inhibitor compound of this type has not hitherto been reported. The presence of inhibitory compound(s) in the autohydrolysis liquor fraction is also reported.  相似文献   

19.
Summary The specificity of induction of wooddegrading enzymes from Pullularia pullulans was investigated using series of mono-, di- and (14)--trisaccharides or glycanes. A strain of P. pullulans (1740), unable to grow on Avicel or carboxymethyl-cellulose (CMC), uses xylan and steamexploded wood as carbon sources. This strain, thus grown, was evaluated for various enzyme activities. d-Xylose was the nutritional inducer of -xylosidase and -xylanase. d-Glucuronic acid induced activity on CMC and -glucosidase activity was observed regardless of carbon source used. (14)--Xylobiose was not an inducer of -xylanase production, but high levels of this enzyme were obtained with either structural isomers (12) or (13)-. Since synthesis of this enzyme was stimulated by increasing xylose concentration yp to 40 g/l, it is suggested that xylose enters the cells by passive transport and is unable to induce a permease system.Affiliated to the Scientific, Technological and Medical University of Grenoble  相似文献   

20.
4-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-6-O-benzoyl--D-galactopyranosyl)--D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-1-thio-2-trichloroacetamido--D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-(1 3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido--D-galactopyranosyl)-(1 4)-(2,3-di-O-benzyl-6-O-benzoyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of -D-Gal-(1 3)--D-GalNAc-(1 4)--D-Gal-(1 4)--D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3-O-glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,6-di-O-benzyl--D-galactopyranosyl)--D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero--D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)oate]-(2 3)-(2,6-di-O-benzyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl) 1-thio-2-trichloroacetamido--D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-(1 3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido--D-galactopyranosyl)-(1 4)-{[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)onate]-(2 3)}-(2,6-di-O-benzyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of -D-Gal-(1 3)--D-GalNAc-(1 4)-[-D-Neu5Ac-(2 3)]--D-Gal-(1 4)--D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号