首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cell free extracts from a streptomycin-resistant E. coli mutant which is also temperature-sensitive for Q phage were studied for suppression of a nonsense mutation at various temperatures. The streptomycin-resistant ribosomes of the mutant were found to be temperature-sensitive in suppression of an amber mutation in f2 phage coat protein while retaining the ability to synthesize proteins at an elevated temperature (42° C). The restriction of amber suppression at 42° C is assumed to be related to an alteration in the ribosomal protein S12 of the streptomycin-resistant mutant which also causes a change in its electrophoretic mobility.  相似文献   

2.
Summary A mutant of Escherichia coli was isolated that grew at a normal rate in minimal medium at 26°C, grew at a normal rate in minimal medium at 37°C only if exogenous histidine was supplied, and grew more slowly than normal at 42°C even in the presence of histidine. In very rich media the growth rate of the mutant was normal at 26°C and 30°C, but not at 37°C or 42°C. It may be described as a temperature-conditional histidine bradytroph with a decreased ceiling to its growth rate.The histidyl-tRNA synthetase of the mutant was found to be abnormal; in crude extracts the enzyme activity was less stable and had approximately a tenfold higher apparent K Mfor histidine than normal.Under many growth conditions the histidine biosynthetic enzymes in the mutant were derepressed several hundred fold compared to the wild strain, even in the presence of exogenous genous histidine. In general, the degree of derepression in the mutant was proportional to the difference in growth rate between the mutant and normal strains; this relationship, however, did not hold below 30°C or above 37°C.The properties of the mutant could be related to the properties of its histidyl-tRNA synthetase by assuming that the enzyme participates both in protein synthesis and in histidine biosynthetic enzyme regulation and that at low temperature it functions relatively more effectively in protein synthesis than in repression, while at high temperature it functions relatively more effectively in repression.Abbreviations used tRNA transfer RNA - AICAR aminoimidazole carboxamide ribose-5-phosphate  相似文献   

3.
Genetic studies on temperature sensitive nonsense suppression   总被引:3,自引:0,他引:3  
Summary Temperature sensitive suppression of nonsense mutations has been obtained, in E. coli, by inducing a mutation in the suppressor gene su-4, a structural gene for a tyrosine tRNA. In this mutant while no suppression is detectable at 42°C it is always present at lower temperatures. This temperature sensitivity is amenable to a reversible inactivation of the product of the su-4 gene.  相似文献   

4.
Summary we have screened 897 temperature sensitive growth mutants ofE. coli for mutant strains showing longer mRNA half-life. The fate of pulse-labelled RNA was examined at 42° C after cessation of RNA synthesis and with prior exposure to nonpermissive temperature (42° C). Eight stains showed altered turn-over of RNA (presumably mRNA), and further analysis on mutant strain JE15144 indicated that the stability of pulse-labeled RNA as well as of tryptophan (trp) mRNA increased four to seven fold over its parental strain at 42° C. At 4 min or 10 min after addition of rifampicin, some 70 to 80% of polyribosome in the growing cells could still be conserved in JE15144 cultured at the nonpermissive temperature while little, if any, polyribosomes remained in its parental strain (PA3092) under the same condition. Two generation times were required for complete stoppage of growth of this mutant strain after shifting to 42° C, and protein synthesis continued at a significant, but slightly reduced, rate at 42° C. However, functional decay of mRNA in the mutant strain, with respect to the capacity for producing peptides, appeared to be similar to the parent strain, with half-lives of 3.5 min in PA3092 and 4.7 min in JE15144.  相似文献   

5.
A temperature-sensitive mutant of a thermophilic bacillus was isolated which was unable to maintain membrane integrity at high temperature. The mutant appeared to lose cytoplasmic contents, as indicated by a decrease in turbidity and cell refractivity, when shifted from a permissive (52° C) to a restrictive (65° C) temperature. Cell number remained fairly constant, however. At the approximate onset of the decline in turbidity, viability decreased and net synthesis of ribonucleic acid, deoxyribonucleic acid, and protein ceased. Both chloramphenicol and sucrose were effective in retarding the decline in turbidity at 65° C. An abnormal fatty acid composition at high temperature suggested that the lesion in the mutant involved lipid synthesis. The proportion of fatty acids with a high melting point (> 55° C) increased in the parent from 42% at 42° C to 69% at 65° C. Similar changes were not made by the mutant. An abnormal phospholipid composition was also observed in the mutant at 42° C and 52° C. However, at 58° C, the maximum growth temperature of the mutant, the proportion of major phospholipids (phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin) was similar to the parent strain. The mutant's apparent loss of membrane stability at high temperature and its inability to regulate fatty acid and phospholipid composition in a normal manner suggested that (i) the temperature-sensitivity of the mutant may be a result of a defect in normal lipid metabolism at high temperature and (ii) the normal changes in fatty acid composition observed at increased growth temperatures may be an essential feature of thermophily.A preliminary report of this work was presented at the 73rd Annual Meeting of the American Society for Microbiology, Miami Beach, Florida, May 6–11, 1973.  相似文献   

6.
Summary A mutant (dna-1) of Salmonella typhimurium defective in DNA synthesis is described. DNA synthesis is stopped in this mutant at 42° after a residual synthesis amounting to about 50 to 60% of the total cellular DNA in minimal medium and about 120 to 200% in a medium enriched with amino acids. Reshift back to permissive temperature after the inhibition of DNA synthesis at 42° allows for recovery of DNA synthesis after a lag of about 30 min. Protein synthesis is required during that lag for the recovery of DNA synthesis at permissive temperature. The density transfer experiments indicate that in the mutant dna-1 chromosome termini are replicated normally at 42° while the initiation of new rounds of replication is inhibited although the mutation is probably leaky at this temperature. The mutant is hypersensitive to sodium deoxycholate at 42° which suggests alteration of the membrane structure.  相似文献   

7.
Summary A heat resistant mutant of E. coli dnaAts46 was isolated, which grows normally only at temperatures above 39°. After a temperature shift from 42° to 32° the mutant overproduces DNA relative to protein. This is due to overinitiation of rounds of chromosome replication at low temperature, as indicated by hybridization and other experiments. The mutation is cotransduced by Pl with ilv and could not be separated from dnaAts46 by transduction.  相似文献   

8.
Summary A mutant of E. coli K12 appears to be temperature-sensitive in the process of initiation of DNA replication. After a temperature shift from 33 to 42°C, the amount of residual DNA synthesis (Fig. 1) and the number of residual cell divisions (Figs. 2,4) indicate that rounds of DNA replication in process are completed, but new rounds cannot be initiated. Following the alignment of chromosomal DNA by amino acid starvation at 33° C no residual DNA synthesis at 42°C takes place (Fig. 5). When the temperature is lowered to 33°C after a period of inhibition at 42°C, the following observations are made: 1. DNA replication resumes and proceeds synchroneously, (Figs. 7, 8a), 2. cells start to divide again only after a lag period of about 1 hour 3. a temporary increase in cell volume is correlated with the frequency of initiation of DNA synthesis (Fig. 8a, b). In a lysogenic mutant strain prophage is inducible; with all bacteriophages tested, replication of phage DNA is not inhibited at 42°C.  相似文献   

9.
Summary A heat-sensitive mutant of Neurospora crassa, strain 4M(t), was isolated using ultraviolet-light mutagenesis followed by the inositol-less death enrichment technique. The heat-sensitivity is the result of a single gene mutation which maps to the distal end of the right arm of linkage group II. The mutation defines the rip-1 gene locus. Both conidial germination and mycelial extension are inhibited in the mutant at 35°C and above (the nonpermissive temperature) but prolonged incubation at that temperature is not lethal to either cell type. Analysis of the lateral mycelial growth rates of wild type and of the rip-1 mutant at a variety of temperatures between 10 and 40°C indicated that the maximal growth rate occurs at 35°C in the wild type, and at 25°C in the rip-1 strain. The rip-1 mutant grows 239-times slower at 35°C than at 25°C, whereas the wild type grows 1.4-times faster. Temperature shift-up experiments showed that even 3 h at 20°C is not sufficient to allow germination at 37°C, thereby showing that the mutant cannot accumulate enough heat-sensitive product at the permissive temperature to contribute to germination at 37°C. The reciprocal temperature shift-down experiments showed that the molecular events at 37°C may be qualitatively useful for germination after shifting to 20°C. Studies of macromolecular synthesis showed that the biochemical defect in the heat-sensitive strain appears to affect RNA synthesis before protein synthesis, although there were differences in the relative effects depending on the age of the germinating conidia and the inhibition of the two processes was never complete. Messenger RNA synthesis is normal in the mutant at 37°C. Previous work has shown that the rip-1 mutant strain has a conditional defect in the accumulation of 25S rRNA and, hence, in 60S ribosomal subunit production (Loo et al. 1981). There are also indications from those studies that the 60S ribosomal subunit may be functionally impaired at the higher temperature. Thus, the growth and macromolecular synthesis phenotypes may result as a consequence of a conditional, ribosome function defect and leads to the hypothesis that the mutation in the rip-1 strain may be in a gene for a 60S ribosomal subunit component, perhaps a ribosomal protein.  相似文献   

10.
After being heated at 65°C for 10 min, 51% of the protein in a cell-free extract fromBacillus subtilis BR151 was denatured, whereas the comparable value was 8% for the S-30 of a spontaneously occurring, temperature-resistant (T/r) mutant. Although ribosomes isolated from the T/r mutant retained 97% of their initial protein synthetic activity when preincubated at 60°C for 30 min, ribosomes prepared from the mesophilic parent were completely inactivated under these conditions. The optimum temperature for poly U-directed phenylalanine incorporation was 45°C for both parental and mutant extracts assayed in the absence of polyamines. The addition of spermidine to the S-30 from the mesophilic parent inhibited protein synthesis at each temperature tested, whereas this polyamine stimulated polyphenylalanine synthesis in the T/r extract at both 55°C and 65°C.  相似文献   

11.
12.
Summary Peptidyl tRNA hydrolase is an essential enzyme for normal growth inasmuch as a mutant strain of Escherichia coli with a temperature-sensitive hydrolase cannot continue protein synthesis at the non-permissive temperature. In the absence of hydrolase peptidyl tRNA rapidly accumulates. Why peptidyl tRNA should be formed is the subject of this report. The rapid rate of protein synthesis is likely one mechanism of formation of peptidyl tRNA. A strA mutant of the hydrolase (pth-1) mutant strain that has a 40% reduction in amino acid polymerization rate can grow at 42° C. StrA mutants with normal polymerization rates, however, cannot grow at 42° C when pth-1 is present. Furthermore, addition of low levels of chloramphenicol (2–4 g/ml) but not several other tested drugs, phenotypically suppressed pth-1 at 42° C. Chloramphenicol, at these concentrations, was found to reduce the amino acid polymerization rate 30–40%. On the other hand, no evidence could be found that amino acyl tRNA selection errors are incorporated into pseudo revertants of the pth-1 strain.This investigation was supported by NSF grant No. PCM 76-11012. Journal Paper No. J-9502 of the Iowa Agriculture and Home Economics Experiment Station. Project No. 2299  相似文献   

13.
Summary A temperature-sensitive EFG mutant of Bacillus subtilis was isolated and characterized. This mutant, ts32, synthesizes stable RNA at 48° C with or at 50° C without accompanied protein synthesis. The initial rate of the RNA synthesis at 48° C or 50° C was 1.5 to 2.0 times as much as that at 30° C.This mutant as well as its parent (both leu -) showed stringent response for the RNA synthesis upon deprivation of amino acids with an accumulation of the MS nucleotides (pp Gpp and pppGpp). On raising temperature to 48° C or 50° C, the ts-cells immediately began to synthesize the stable RNA with an initial increase of the MS nucleotides. No drastic decrease in amount of the MS was observed during the active RNA synthesis.These results suggest that EFG is somehow involved in repressing the stable RNA synthesis, and have broken the close relationship between the stable RNA synthesis and the MS nucleotides hitherto reported.  相似文献   

14.
Summary The dnaA gene product of Escherichia coli, identified as a weakly basic protein of about 48,000 daltons (Yuasa and Sakakibara 1980), can be separated from other celluar proteins by means of two-dimensional gel electrophoresis. Synthesis of the dnaA protein took place continuously during a cell growth cycle. The newly synthesized dnaA protein persisted stably for one generation. Thermosensitive dnaA protein produced by the dnaA167 mutant was stable at 30° C, but was disintegrated at 42° C. The amount of intact dnaA protein present in the mutant exposed to the high temperature for 60 min was less than a quarter of the amount at the time of the shift. The cells having the reduced amount of intact dnaA protein were capable of initiating a new round of chromosome replication at the low temperature without de novo synthesis of the dnaA protein. The potential of the mutant for initiation of DNA replication decreased with reduction in the amount of the thermoreversible dnaA protein. The mutations dnaA167 and dnaA46 had no significant effect on the syntheses of the dnaA mRNA and the protein product at the low and high temperatures.Abbreviations used SDS sodium dodecyl sulfate - kb kilobase pairs - TCA trichloroacetic acid  相似文献   

15.
Nalidixic acid-resistant mutants ofEscherichia coli CGSC #6353 capable of growth at 48°C were obtained by mutagenesis withN-methyl-N-nitro-N-nitrosoguanidine. Cotransductional analyses employing phage P1 indicated that the mutation resulting in the phenotype of growth at 48°C is an allele of thegyrA structural gene. Similar thermal inactivation kinetics were observed for ribosomes isolated from a thermotolerant (T/r) mutant grown at both 37°C and 48°C and from the parental strain grown at 37°C. Cell-free extracts prepared from the T/r mutant grown at 48°C exhibited a sharp increase in protein synthesis at 55°C, whereas this effect was not displayed by extracts from the mutant or parental strains grown at 37°C. In addition, preincubation at 55°C enhanced protein synthesis at 37°C up to 15-fold in an extract prepared from the T/r mutant grown at 48°C, whereas comparable values were 2.6- to 3.0-fold for extracts from the mutant and parental strains grown at 37°C.  相似文献   

16.
Summary Enterobacter cloacae cells, harbouring the cloacinogenic factor DF13 (Clo DF13) are immune to the cloacin they produce. We describe the isolation of eleven Enterobacter cloacae (Clo DF13) mutants, which are immune at 30°C, but lose their immunity at 42°C. The temperature sensitive immunity (Immts) of these mutants appeared not to be transferable together with the Clo DF13 factor to non-cloacinogenic acceptor strains. Apparently host mutations are involved in the Immts phenotype. Two different groups of Immts mutants could be identified. ImmtsC6 and ImmtsC8, representatives of each group, have been compared with the parent strain. ImmtsC6 as well as ImmtsC8 is sensitive to crude cloacin at 42°C. Immts mutants appeared to be also sensitive to cell components other than cloacin, indicating that the Immts mutations may result in pleiotropic changes of cell properties.The ImmtsC6 mutant is sensitive to deoxycholate and osmotic shock at 42°C. Spheroplasts of ImmtsC6 cells incubated at 42°C are sensitive to DOC at 42°C and 30°C. The pleiotrophic changes of the ImmtsC6 mutant may be attributed to a defect in the cell membrane.The ImmtsC8, incubated at 42°C, is sensitive to deoxycholate, osmotic shock, ethylene-diaminetetraacetic acid, dyes, drugs and UV. Furthermore they form filaments. ImmtsC8 spheroplasts are as sensitive to deoxycholate as the parent strain at 42°C. The pleiotropic changes in the phenotype of ImmtsC8 are considered to be the result of a defect in the outer layers of the cell envelope, most likely the lipopolysaccharide layer.The possible relationship between the observed structural defects in the cell envelope of Immts mutants and the phenomenon of immunity have been discussed.  相似文献   

17.
Summary We have transduced the mutant allele ssb-1, which encodes a temperature-sensitive single-strand DNA binding protein (SSB), into several Escherichia coli strains, and have examined colony-forming ability, DNA replication, sensitivity to ultraviolet light (UV) and UV-induced mutability at the nonpermissive temperature. We have found: 1) that the degree of ssb-1-mediated temperature-sensitivity of colony-forming ability and of DNA replication is strain-dependent, resulting in plating efficiencies at 42° C (relative to 30° C) ranging from 100% to 0.002%; 2) that complete suppression of the temperature-sensitivity caused by ssb-1 occurs only on nutrient agar, and not in any other medium tested; 3) that strains in which ssb-1-mediated temperature-sensitivity is completely suppressed show moderate UV sensitivity and normal UV mutability at 30° C, but much more extreme UV sensitivity and drastically reduced UV mutability at 42° C; and 4) that defects in excision repair or in other Uvr+-dependent processes are not responsible for most of the UV sensitivity promoted by ssb-1. We discuss our results in relation to the known properties of SSB and its possible role in the induction of DNA damage-inducible (SOS) functions.  相似文献   

18.
Summary E. coli mutants exist in which DNA synthesis is thermosensitive. In one class of these mutants DNA synthesis stops immediately if a critical temperature (42°C) is reached. When DNA replication in such mutants is followed by 3H thymidine incorporation at 33°C, it is found that 1. only the newly made DNA is degraded at 42°C, 2. the discontinuously replicated DNA is lost predominantly at 42°C, 3. 1–3% of the chromosomal DNA is rendered acid soluble at 42°C without concomitant loss of viability of the cells at 33°C.Replication of phage DNA is inhibited in the same mutant at 42°C. However, when DNA synthesis is followed in infected cells at 33°C it is found that 1. no degradation of specific DNA seems to occur at 42°C in the early phase of infection, 2. replicating DNA molecules in the late phase of infection are completed at 42°C before DNA synthesis comes to a halt.  相似文献   

19.
Summary Because induction of proteolytic activity and stress-response proteins can significantly affect expression levels in recombinant Escherichia coli, the influence of low-level expression of a mutant \-galactosidase was investigated. A single copy of the well-characterized CSH11 mutant of the lacZ gene was integrated into the chromosome. Induction of expression of the mutant \-galactosidase caused a measurable increase in ATP-dependent intracellular proteolytic activity but resulted in no significant change in ATP-independent proteolytic activity. Growth at temperatures above 40°C resulted in a significant decrease in the level of ATP-independent proteolytic activity compared to growth at 37°C, and the ATP-dependent activity increased 2.5-fold from 30 to 42°C. Synthesis of stress-response proteins was evident in two-dimensional gel electrophoresis analysis of proteins in the strain expressing the abnormal \-galactosidase at 37°C, but no such response was evident when mutant \-galactosidase expression was induced at 30°C. In separate experiments, stress proteins were overexpressed by inducing expression of the htpR gene on a plasmid. Resulting increases in stress-protein levels correlated with an increase in ATP-dependent proteolytic activity with no significant change in the intracellular ATP-independent proteolytic activity. These data suggest that even very low levels of abnormal protein can substantially influence protease levels and stress response in E. coli. These responses were reduced by induction' at lower temperatures. Correspondence to: J. E. Bailey  相似文献   

20.
Summary The temperature-sensitive mutation in Bacillus subtilis 168-134ts, a conditional lethal DNA initiation mutant, was transferred to the minicell producing strain, CU 403 div IV-B1, to study he relationship of DNA synthesis to cell division. Markers in the combined mutant were verified by transduction. DNA replication kinetics, genome location by autoradiography, and clonal analysis of cell division patterns during spore outgrowths were investigated. Growth of the double mutant at the restrictive temperature results in an impressive reduction of the percentage cell length covered by DNA grain clusters (60.2% at 30° C compared to 8.6% after 2 h at 45° C). The probability of a minicell producing division in double mutant clones is essentially the same at 30° C and during the initial 2–3 h growth at 45° C at which time lysis begins. Residual division at 45° C is attributable to processes initiated at 30° C. The CU 403 div IV-B1, 134ts, double mutant divides about 25% as frequently relative to growth as do wild type CU 403 clones when incubated at permissive temperature. This is approximately 15% greater division suppression than previously found in the CU 403 div IV-B1 mutant strain, and is presumably due to interactions of the mutant gene products both of which affect DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号