首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Part 1 of this research investigated environmental footprint for the cradle-to-grave of a linear metre I-beam made from traditional and alternative materials which are stainless steel (316) and glass reinforced plastics (GRP). Results revealed that GRP generally produced less environmental footprint than stainless steel. The main contribution found in the cradle-to-gate caused by raw materials (90 %) and associated transportation (10 %). Certain impact categories of GRP were either equalled or higher than stainless steel I-beam including the climate change impact category. Therefore, part 2 of this research further investigates the ecological and economic hot spots of the cradle-to-gate of GRP I-beam and alternative supply chain scenarios. The potential carbon tax was also estimated under two different situations.

Methods

GRP and stainless steel (316) are used to assess the environmental footprint and the economic impact of 6,098 m I-beams as a production volume in practice. The World ReCiPe midpoint and endpoint methods generated the life cycle inventory, characteristic and single score results for the environmental footprint. The economic impact estimated based on a simple cost calculation associated with the cradle-to-gate including material, production and transportation costs. The ecological and economic hot spots were identified and formed 12 supply chain scenarios.

Results and discussion

Both identified hot spots came from raw materials that used in large quantities, consumed higher electricity and delivered by road and water transportation over long travel distances. The climate change impact category and the potential carbon tax values are improved under the scenarios that use a supplier from countries that generate electricity from less coal-based energy source and involve less transportation in delivering the raw materials.

Conclusions

Win–win and trade-off scenarios were revealed when comparing both impacts. The former scenario reduces material costs, the travel distances and using lower freight rate transportation that consumes less fuel such as shipping. The latter scenarios are often occurred by either attempting to reduce the environmental footprint from using less transportation but the raw material costs are suffered. Manufacturers may select the scenario based on their production constrains. Cradle-to-grave was discussed and shown the benefits in including steel recycling into the assessment which can equate the potential carbon tax of the stainless steel with some GRP I-beam scenarios. Future work can be enhanced by considering other factors in the practice of manufacturing system such as insurance cost and lead time.  相似文献   

2.

Purpose

Pharmaceutical and biological materials require thermally controlled environments when being transported between manufacturers, clinics, and hospitals. It is the purpose of this report to compare the life cycle impacts of two distinct logistical approaches to packaging commonly used in cold chain logistics and to identify the method of least environmental burden. The approaches of interest are single-use packaging utilizing containers insulated with either polyurethane or polystyrene and reusable packaging utilizing containers with vacuum-insulated panels.

Methods

This study has taken a cradle-to-grave perspective, which covers material extraction, manufacture, assembly, usage, transportation, and end-of-life realities. The functional unit of comparison is a 2-year clinical trial consisting of 30,000 individual package shipments able to maintain roughly 12 L of payload at a controlled 2–8 °C temperature range for approximately 96 h. Published life-cycle inventory data were used for process and material emissions. A population-centered averaging method was used to estimate transportation distances to and from clinical sites during container use. Environmental impacts of the study include global warming potential, eutrophication potential, acidification potential, photochemical oxidation potential, human toxicity potential, and postconsumer waste.

Results and discussion

The average single-use approach emits 1,122 tonnes of CO2e compared with 241 tonnes with the reusable approach over the functional unit. This is roughly a 75 % difference in global warming potential between the two approaches. Similar differences exist in other impact categories with the reusable approach showing 60 % less acidification potential, 65 % less eutrophication potential, 85 % less photochemical ozone potential, 85 % less human toxicity potential, and 95 % less postconsumer waste. The cradle-to-gate emissions of the single-use container were the overwhelming cause of its high environmental burden as 30,000 units were required to satisfy the functional unit rather than 772 for the reusable approach. The reusable container was about half the mass of the average single-use container, which lowered its transportation emissions below the single-use approach despite an extra leg of travel.

Conclusions

The reusable logistical approach has shown to impose a significantly smaller environmental burden in all impact categories of interest. A sensitivity analysis has shown some leeway in the degree of the environmental advantage of the reusable approach, but it confirms the conclusion as no case proved otherwise.  相似文献   

3.

Purpose

The purpose of this paper is to provide an improved (up-to-date) insight into the environmental burden of textiles made of the base materials cotton, polyester (PET), nylon, acryl, and elastane. The research question is: Which base material and which life cycle stage (cradle-to-gate as well as cradle-to-grave) have the biggest impact on the environment?

Methods

Life cycle inventory (LCI) data are collected from the literature, life cycle assessment (LCA) databases, and emission registration database of the Dutch government, as well as communications with both manufacturing companies of production equipment and textile companies. The output of the calculations is presented in four single indicators: Eco-costs 2012 (a prevention-based indicator), CO2 equivalent (carbon footprint), cumulative energy demand (CED), and ReCiPe (a damage-based indicator).

Results and discussion

From an analysis of the data, it becomes clear that the environmental burden is not only a function of the base materials (cotton, PET, nylon, acryl, and elastane) but also of the thickness of the yarn (for this research, the range of 50–500 dtex is examined). The authors propose that the environmental burden of spinning, weaving, and knitting is a function of 1/yarn size. The cradle-to-grave analysis from raw material extraction to discarded textile demonstrates that textiles made out of acryl and PET have the least impact on the environment, followed by elastane, nylon, and cotton. The use phase has less relative impact than it is suggested in the classical literature.

Conclusions

The impact of spinning and weaving is relatively high (for yarn thicknesses of less than 100 dtex), and from the environmental point of view, knitting is better than weaving. LCA on textiles can only be accurate when the yarn thickness is specified. In case the functional unit also indicates the fabric per square meter, the density must be known. LCA results of textile products over the whole value chain are case dependent, especially when dyeing and finishing processes and the use phase and end-of-life are included in the analysis. Further LCI data studies on textiles and garments are urgently needed to lower the uncertainties in contemporary LCA of textile materials and products.  相似文献   

4.

Background, aim, and scope

Using renewable feedstock and introducing biocatalysts in the chemical industry have been suggested as the key strategies to reduce the environmental impact of chemicals. The Swedish interdisciplinary research program “Speciality Chemicals from Renewable Resources—Greenchem” is aiming to develop these strategies. One target group of chemicals for Greenchem are wax esters which can be used in wood coatings to replace paraffin wax made from fossil crude oil. The aim of this study was to conduct a life cycle assessment of wax esters based on rapeseed oil produced by biocatalysts (enzymes). The scope was to compare the environmental performance of wax esters with paraffin wax produced by conventional methods.

Materials and methods

The study has a cradle-to-gate perspective and the functional unit is “1-kg wax product ready to use in a wood coating product.” Extensive data collection and calculations have been performed for the wax esters, whereas existing life cycle inventory data have been used for the paraffin wax.

Results

The energy input into the wax ester production is about one third of the energy input in paraffin wax production. However, the wax ester has a higher contribution to the global warming potential (GWP) due to high emissions of nitrous oxide from rapeseed cultivation. Referring to a cradle-to-grave perspective, including waste incineration, the contribution to the GWP will, however, be 3.5 times higher from paraffin wax. Wax ester makes a higher contribution to the acidification and eutrophication potential, due to emissions from soil from rapeseed cultivation, but five times lower contribution to the photochemical ozone creation potential. From a land-use perspective and a global warming point of view, it is more efficient to produce paraffin wax and grow high-yielding, short-rotation coppice (Salix) to replace fuel oil than it is to grow rapeseed for wax ester production.

Discussion

Overall, this study shows the importance of studying the environmental performance of a product not only from a gate-to-gate perspective but, instead, considering the environmental performance from cradle-to-gate. The biocatalytic production of the wax ester consumes less energy than the conventional chemical method, but the raw material step, cultivation of rapeseed contributes much to both acidification and eutrophication. When the waste treatment step is included, the contribution to GWP, however, for paraffin wax will be 3.5 times higher than for the wax ester.

Conclusions

From a gate-to-gate perspective, replacing conventional chemical processes by biocatalysts using enzymes leads to energy savings and reduces emissions. However, from a cradle-to-gate perspective, the use of renewable feedstock, such as rapeseed oil, may counteract some of these benefits. Concerning the GWP benefit from using renewable feedstock instead of fossil feedstock, the final waste treatment step must be included, thereby applying a cradle-to-grave perspective.

Recommendations and perspectives

The introduction of biocatalysts as a key strategy in reducing the environmental impact from the chemical industry is supported by the results in this study. On the other hand, it is not obvious that the key strategy of using renewable feedstock in chemical production per se leads to benefits concerning all environmental impact categories. Thus, much more attention needs to be paid to the choice of potential renewable feedstock options, the minimization of energy inputs, and the biological emissions from the soil in the cultivation of feedstock crops, improved gas cleaning in nitrogen fertilizer production plants, and the alternative use of the arable land, in optimizing the overall environmental benefits of an increased use of renewable feedstock in the chemical industry.  相似文献   

5.

Purpose

Life cycle assessment (LCA) studies allow understanding all relevant processes and environmental impacts involved in the life cycle of products. However, in order to fully assess their sustainability, these studies should be complemented by economic (LCC) and societal analyses. In this context, the present work aims at assessing all costs (internal and external) and the environmental performance associated to the full life cycle of specific engineering products. These products are lighting columns for roadway illumination made with three different materials: a glass fibre reinforced polymer composite, steel and aluminium.

Methods

The LCA/LCC integrated methodology used was based in a ??cradle-to-grave?? assessment which considers the raw materials production, manufacture, on-site installation, use and maintenance, dismantlement and end-of-life (EoL) of the lighting columns. The fossil fuels environmental impact category was selected as the key environmental impact indicator to perform the integrated environmental and cost analysis.

Results

The potential total costs obtained for the full life cycle of the lighting columns demonstrated that the one made in steel performs globally worse than those made in composite or aluminium. Although the three systems present very similar internal costs, the steel column has higher external costs in the use phase that contribute for its higher total cost. This column has very high costs associated to safety features, since it constitutes a significant risk to the life of individuals. The raw material and column production stages are the main contributors for the total internal life cycle costs. The EoL treatment is a revenue source in all systems because it generates energy (in the case of the composite incineration) or materials (in the case of metal recycling). The composite and aluminium lighting columns present similar ??cradle-to-grave?? life cycle total cost. However, until the dismantlement phase, the aluminium column presents the highest environmental impact, whereas in the EoL treatment phase this scenario is reversed. The ??cradle-to-grave?? life cycle potential total cost and the environmental impact (fossil fuels) indicator of the steel lighting column are higher than those of the other columns.

Conclusions

Even though the uncertainties in the LCC are larger if external costs are included, their consideration when modelling the economic performance of engineering products increases the probability of developing a more sustainable solution from a societal perspective.  相似文献   

6.

Purpose

The environmental aspects of paper as a consumer good have been extensively studied. However, the paper machine has been mostly neglected in the literature. The purpose of this article is to present a LCA case study that explicitly focuses on the system of a newsprint paper machine and its environmental impacts and not on the system of the consumer good paper. The relevance of the paper machine as capital equipment is analyzed, and conclusions for the environmental improvement of paper machines are drawn based on identified hotspots. The article hereby answers the more general research questions of whether capital equipment has rightly been neglected in other studies regarding pulp and paper and which impact categories are important for analyzing the environmental burdens of a paper machine.

Methods

The study has been executed in collaboration with Voith Paper, an original equipment manufacturer. Hence, in distinction to literature-based studies, primary data on the paper machine was available resulting in a high overall data quality. Based on the ISO 14040 (2006) and 14044 (2006) standards, this article pursues a cradle-to-grave approach for the paper machine. It assesses the environmental impacts in the impact categories defined by the ReCiPe impact assessment methodology. Different types of energy generation are examined in a scenario analysis with combined heat and power generation (CHP) as the baseline case. For interpretation, a normalization and a sectoral analysis are performed.

Results and discussion

The normalized results indicate fossil resource depletion and global warming as the most important impact categories. Global warming impacts are highly dependent on the energy processes and result to 432.7 kg CO2e per production of 1 t of paper for CHP and to 701.7 kg CO2e for EU25 grid mix. The sectoral analysis shows that the machinery's operations/use phase is clearly dominating most impact categories due to its long lifetime. An exception is the metal depletion, for which the materials and manufacturing processes are most important.

Conclusions

These findings prove that for most categories, the operations/use phase of the paper machine is the most important life cycle stage. In systems focusing on the consumer good paper, it is therefore sufficient to model the operation of the paper machine, whereas the manufacturing, transport, and end-of-life processes regarding the paper machine equipment can be neglected, unless metal depletion is important to the study.  相似文献   

7.

Purpose

Built in 1941, the Progreso Pier was the first concrete structure in the world built with nickel-containing stainless steel reinforcement. The Pier has been in service for over 70 years without any significant repair or maintenance activities. The aim of this study was to understand the environmental and economic implications of selecting nickel-containing stainless steel reinforcement using the Progreso Pier as the case study.

Methods

A combined environmental life cycle assessment (LCA) and life cycle costing (LCC) study was conducted. The analysis considered the potential environmental impacts and the net present cost of the stainless steel reinforced structure from cradle to grave and compared it to the same structure using conventional carbon steel.

Results and discussion

The results indicated that while using stainless steel reinforcement resulted in a marginally higher environmental impact after initial construction, this is offset by the increased service life and, hence, less frequent maintenance and reconstruction activities. Relative to the as-built stainless steel reinforcement design, the environmental impacts of the carbon steel reinforced design are between 69 and 79 % higher over the analysis period. Similar observations were made for the other investigated impact categories. The cost implications of using stainless steel reinforcement show economic benefits that are complementary to the environmental benefits. Similar to the LCA, the service life benefits outweigh the higher unit costs for stainless steel, assuming a discount rate of 0.01 % as the baseline scenario. The carbon steel reinforced design has a net present cost that is 44 % higher than the as-built stainless steel reinforcement design. The crossover point for the two designs occurs at year 50, which corresponds to the reconstruction activity. A sensitivity analysis shows that the results and conclusions are sensitive to the choice in discount rate: Rates 3 % and lower produce net present costs that are lower for the as-built design; rates 4 % and higher produce net present costs that are lower for the alternative design.

Conclusions

The study demonstrates how LCA and LCC are complementary tools that can be used in decision-making for sustainable construction. The Progreso Pier exemplifies the importance of considering the entire life cycle with service life and recycling as well as long-term life cycle impacts of infrastructure projects from an environmental and economic perspective.
  相似文献   

8.

Purpose

The aim of the present paper is to describe the development of a life cycle assessment study of the service of potable water supply in Sicily, Italy. The analysis considers the stages of collection, treatment and distribution of potable water through the regional network, whilst the use stage of water is not included.

Methods

The selection of a methodological pattern coherently with the requirements of an environmental label, such as the EPDs, aims at allowing comparability among different studies.

Results and discussion

The analysis shows the shares of impacts along the life cycle chain, i.e. outputs by well fields and spring groups, purification and desalination plants, water losses in the waterworks, electrical consumption of waterworks systems and impacts of network maintenance. With regard to global warming potential (GWP), the impact of purification plants represents a 6–7 % share of the total, whilst desalination is at 74 %. Water losses in the waterworks show an impact of 15–17 %; the contribution owing to electrical consumption of waterworks systems and network maintenance results to be 3 %. Desalination plants represent the major contribution to all impact categories considered.

Conclusions

In respect to management issues, the most relevant impact categories resulted to be GWP, non-renewable energy resources and water consumption. Since the results for non-renewable energy resources are strictly connected to GWP emissions, carbon footprint and water footprint can be profitably used as single-issue indicators without the risk of burden shifting in studies aiming to evaluate the impact of potable water distribution.  相似文献   

9.

Purpose

There are methodological questions concerning life cycle assessment (LCA) and carbon footprint evaluation of road pavements, including allocation among co-products or at end-of-life (EOL) recycling. While the development and adoption of a standard methodology for road pavement LCA would assist in transparency and decision making, the impact of the chosen method on the results has not yet been fully explored.

Methods

This paper examines the methodological choices made in UK PAS 2050 and asphalt Pavement Embodied Carbon Tool (asPECT), and reviews the allocation methods available to conduct road pavement LCA. A case study of a UK inter-urban road construction (cradle-to-laid) is presented to indicate the impact of allocation amongst co-products (bitumen and blast furnace slag); a typical UK asphalt production (cradle-to-gate) is modelled to show the influence of allocation at EOL recycling.

Results and discussion

Allocation based on mass is found to consistently lead to the highest figures in all impact categories, believed to be typical for construction materials. Changing from industry chosen allocation methods (Eurobitume, asPECT) to 100 % mass or economic allocation leads to changes in results, which vary across impact categories. This study illustrates how the allocation methods for EOL recycling affect the inventory of a unit process (asphalt production).

Conclusions and recommendations

Sensitivity analysis helps to understand the impact of chosen allocation method and boundary setting on LCA results. This initial work suggests that economic allocation to co-products used as secondary pavement materials may be more appropriate than mass allocation. Allocation at EOL recycling by a substitution method may remain most appropriate, even where the balance of credits between producers and users may be hampered by an inability to confidently predict future recycling rates and methods. In developing sector-specific guidelines, further sensitivity checks are recommended, such as for alternative materials and traffic management during maintenance.  相似文献   

10.

Purpose

A life cycle assessment was conducted to determine a baseline for environmental impacts of cheddar and mozzarella cheese consumption. Product loss/waste, as well as consumer transport and storage, is included. The study scope was from cradle-to-grave with particular emphasis on unit operations under the control of typical cheese-processing plants.

Methods

SimaPro© 7.3 (PRé Consultants, The Netherlands, 2013) was used as the primary modeling software. The ecoinvent life cycle inventory database was used for background unit processes (Frischknecht and Rebitzer, J Cleaner Prod 13(13–14):1337–1343, 2005), modified to incorporate US electricity (EarthShift 2012). Operational data was collected from 17 cheese-manufacturing plants representing 24 % of mozzarella production and 38 % of cheddar production in the USA. Incoming raw milk, cream, or dry milk solids were allocated to coproducts by mass of milk solids. Plant-level engineering assessments of allocation fractions were adopted for major inputs such as electricity, natural gas, and chemicals. Revenue-based allocation was applied for the remaining in-plant processes.

Results and discussion

Greenhouse gas (GHG) emissions are of significant interest. For cheddar, as sold at retail (63.2 % milk solids), the carbon footprint using the IPCC 2007 factors is 8.60 kg CO2e/kg cheese consumed with a 95 % confidence interval (CI) of 5.86–12.2 kg CO2e/kg. For mozzarella, as sold at retail (51.4 % milk solids), the carbon footprint is 7.28 kg CO2e/kg mozzarella consumed, with a 95 % CI of 5.13–9.89 kg CO2e/kg. Normalization of the results based on the IMPACT 2002+ life cycle impact assessment (LCIA) framework suggests that nutrient emissions from both the farm and manufacturing facility wastewater treatment represent the most significant relative impacts across multiple environmental midpoint indicators. Raw milk is the major contributor to most impact categories; thus, efforts to reduce milk/cheese loss across the supply chain are important.

Conclusions

On-farm mitigation efforts around enteric methane, manure management, phosphorus and nitrogen runoff, and pesticides used on crops and livestock can also significantly reduce impacts. Water-related impacts such as depletion and eutrophication can be considered resource management issues—specifically of water quantity and nutrients. Thus, all opportunities for water conservation should be evaluated, and cheese manufacturers, while not having direct control over crop irrigation, the largest water consumption activity, can investigate the water use efficiency of the milk they procure. The regionalized normalization, based on annual US per capita cheese consumption, showed that eutrophication represents the largest relative impact driven by phosphorus runoff from agricultural fields and emissions associated with whey-processing wastewater. Therefore, incorporating best practices around phosphorous and nitrogen management could yield improvements.  相似文献   

11.

Purpose

Cooking energy is an essential requirement of any human dwelling. With the recent upsurge in petroleum prices coupled with intrinsic volatility of international oil markets, it is fast turning into a politico-socio-economic dilemma for countries like India to sustain future subsidies on liquefied petroleum gas (LPG) and kerosene. The aim of this paper is to evaluate and compare the environmental performance of various cooking fuel options, namely LPG (NG), LPG (CO), kerosene, coal, electricity, firewood, crop residue, dung cake, charcoal, and biogas, in the Indian context. The purpose of this study is to find environmentally suitable alternatives to LPG and kerosene for rural and urban areas of the country.

Methods

The study assessed the cooking fuel performance on 13 ReCiPe environmental impact categories using the life cycle assessment methodology. The study modeled the system boundary for each fuel based on the Indian scenario and prepared a detailed life cycle inventory for each cooking fuel taking 1 GJ of heat energy transferred to cooking pot as the functional unit.

Results and discussion

The cooking fuels with the lowest life cycle environmental impacts are biogas followed by LPG, kerosene, and charcoal. The environmental impacts of using LPG are about 15 to 18 % lower than kerosene for most environmental impact categories. LPG derived from natural gas has about 20 to 30 % lower environmental impact than LPG derived from crude oil. Coal and dung cake have the highest environmental impacts because of significant contributions to climate change and particulate formation, respectively. Charcoal produced from renewable wood supply performs better than kerosene on most impact categories except photochemical oxidation, where its contribution is 19 times higher than kerosene.

Conclusions

Biogas and charcoal can be viewed as potentially sustainable cooking fuel options in the Indian context because of their environmental benefits and other associated co-benefits such as land farming, local employment opportunities, and skill development. The study concluded that kerosene, biogas, and charcoal for rural areas and LPG, kerosene, and biogas for urban areas have the lower environmental footprint among the chosen household cooking fuels in the study.  相似文献   

12.

Purpose

Manganese is a metal used extensively in everyday life, particularly in structural steel. Despite the importance of manganese as an essential alloying element in steel and stainless steel, the environmental profile of manganese alloys lacked globally representative, primary industry data. The International Manganese Institute (IMnI) and Hatch completed the first global life cycle assessment (LCA) of manganese alloy production, providing environmental benchmarks and a firm foundation of accurate data with which to inform other industry-led initiatives.

Methods

The study compiled primary data from 16 ore and alloy producers worldwide, covering 18 % of global ore production and 8 % of global alloy production for 2010. This peer-reviewed, ISO 14040 compliant LCA covers the cradle-to-gate life cycles of silicomanganese, ferromanganese, and refined ferromanganese. The study provides a comprehensive picture of global environmental performance, quantifying energy consumption, global warming potential (GWP), acidification potential (AP), photochemical ozone creation potential (POCP), primary water use, and primary waste generation. A novel model architecture was devised to generate process, site, and cradle-to-gate LCAs for single and multiple sites simultaneously, extracting greater value from the LCA process by facilitating environmental and operational benchmarking within the industry.

Results and discussion

The results of the study show that total GWP, AP, and POCP for 1 kg of average manganese alloy was 6.0 kg CO2e, 45 g SO2e, and 3 g C2H4e, respectively. Electricity demand and coal and coke consumption during smelting are the dominant operating parameters contributing to environmental performance. On-site air emission measures (GWP, POCP, NOX, and particulate matter (PM)) contributed 25 to 35 % of total life cycle emissions. Overburden and waste rock were the most significant primary solid waste flows by mass. The study provides a resource for improvement at the global industry and site scales by establishing benchmarks, identifying hotspots, and quantifying the benefits of efficiency savings through process optimization.

Conclusions

This LCA provides accurate primary data to improve steel and stainless steel product LCAs and communicate the environmental performance of the industry in quantitative terms. It facilitates dialogue between manganese producers and consumers through a shared understanding of the environmental profile of the industry. Through leveraging the study to identify hotspots within the manganese supply chain, producers can work both independently and collectively towards improving the environmental and economic performance of manganese alloys.
  相似文献   

13.

Purpose

The purse seine fishery for sardine is the most important fishery in Portugal. The aim of the present study is to assess the environmental impacts of sardine fished by the Portuguese fleet and to analyse a number of variables such as vessel size and time scale. An additional goal was to incorporate fishery-specific impact categories in the case study.

Methods

Life Cycle Assessment methodology was applied, and data were collected from nine vessels, which represented around 10 % of the landings. Vessels were divided into two length categories, above and below 12 m, and data were obtained for the years 2005 to 2010. The study was limited to the fishing phase only. The standard impact categories included were energy use, global warming potential, eutrophication potential, acidification potential and ozone depletion potential. The fishery-specific impact categories were overfishing, overfishedness, lost potential yield, mean trophic level and the primary production required, and were quantified as much as possible.

Results and discussion

The landings from the data set were constituted mainly by sardine (91 %), and the remainders were other small pelagic species (e.g. horse mackerel). The most important input was the fuel, and both vessel categories had the same fuel consumption per catch 0.11 l/kg. Average greenhouse gas emissions (carbon footprint) were 0.36 kg CO2 eq. per kilo sardine landed. The fuel use varied between years, and variability between months can be even higher. Fishing mortality has increased, and the spawning stock biomass has decreased resulting in consequential overfishing for 2010. A correlation between fuel use and stock biomass was not found, and the stock condition does not seem to directly influence the global warming potential in this fishery. Discards were primarily non-target small pelagic species, and there was also mortality of target species resulting from slipping. The seafloor impact was considered to be insignificant due to the fishing method.

Conclusions

The assessment of the Portuguese purse seine fishery resulted in no difference regarding fuel use between large and small vessels, but differences were found between years. The stock has declined, and it has produced below maximum sustainable yield. By-catch and discard data were missing but may be substantial. Even being difficult to quantify, fishery impact categories complement the environmental results with biological information and precaution is need in relation to the stock management. The sardine carbon footprint from Portuguese purse seine was lower than that of other commercial species reported in.  相似文献   

14.

Purpose

The purpose of this study was to update the average environmental impacts of global primary zinc production using a life cycle assessment (LCA) approach. This study represents the latest contribution from zinc producers, which historically established the first life cycle inventory for primary zinc production in 1998 (Western Europe) and the first global LCA-based cradle-to-gate study for zinc concentrate and special high-grade zinc (SHG; 99.99 %) in 2009. Improvements from the previous studies were realized through expanded geographical scope and range of production technologies.

Methods

The product system under study (SHG zinc) was characterized by collecting primary data for the relevant production processes, including zinc ore mining and concentration, transportation of the zinc concentrate, and zinc concentrate smelting. This data was modeled in GaBi 6 and complemented with background data from the GaBi 2013 databases to create the cradle-to-gate LCA model. Allocation was used to distribute the inputs and outputs among the various co-products produced during the production process, with mass of metal content being the preferred allocation approach, when applicable.

Results and discussion

In total, this global study includes primary data from 24 mines and 18 smelters, which cover 4.7?×?106 MT of zinc concentrate and 3.4?×?106 MT of SHG zinc, representing 36 and 27 % of global production, respectively. While the LCA model generated a full life cycle inventory, selected impact categories and indicators are reported in this article (global warming potential, acidification potential, eutrophication potential, photochemical ozone creation potential, ozone creation potential, and primary energy demand). The results show that SHG zinc has a primary energy demand of 37,500 MJ/t and a climate change impact of 2600 kg CO2-eq./t. Across all impact categories and indicators reported here, around 65 % of the burden are associated with smelting, 30 % with mining and concentration, and 5 % with transportation of the concentrate. Sensitivity analyses were carried out for the allocation method (total mass versus mass of metal content) and transportation of zinc concentrate.

Conclusions

This study generated updated LCA information for the global production of SHG zinc, in line with the metal industry’s current harmonization efforts. Through the provision of unit process information for zinc concentrate and SHG zinc production, greater transparency is achieved. Technological and temporal representativeness was deemed to be high. Geographical representativeness, however, was found to be moderate to low. Future studies should focus on increasing company participation from underrepresented regions.
  相似文献   

15.

Purpose

Health care infection control has led to increased utilization of disposable medical devices, which has subsequently led to adverse environmental effects attributed to health care and its supply chain. In dental practice, the dental bur is a commonly used instrument that can be either reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed.

Methods

The functional unit was defined as one reusable dental bur, where the maximum instances reused was 30 (or in the case of a disposable, the equivalent functional unit would be 30 disposable dental burs). The system boundary included all cradle-to-grave aspects of both single-use and reused burs, including raw material extraction, manufacturing, packaging, distribution, reuse, and disposal. Primary data included the following: operating parameters for ultrasonic cleaning, manual cleaning, and autoclaving of the burs. The secondary data for raw material extraction and production of dental bur and packaging were obtained directly from life cycle inventory databases. Sensitivity analyses were also performed with respect to ultrasonic and autoclave loading.

Results and discussion

Findings from this research showed that when the ultrasonic and autoclave were loaded optimally, reusable burs had 40 % less of an environmental impact than burs used on a disposable basis. When the autoclave and ultrasonic were loaded to approximately two-third capacity, four environmental impact categories favored reusable burs (i.e., ozone depletion, smog, respiratory effects, exotoxicity), and four impact categories environmentally favored disposables (i.e., acidification, eutrophication, carcinogenics, and non-carcinogenics). When the autoclave and ultrasonic were loaded to approximately one-third capacity, reusable dental burs posed more negative environmental impacts in eight of nine environmental impact categories when compared to disposable burs.

Conclusions

Operational efficiency of ultrasonic and autoclave cleaning equipment should be emphasized to enhance the environmental performance of bur reuse. In fact, improper loading of the ultrasonic and autoclave can lead to greater adverse environmental impacts than if the burs were treated as disposables. The environmental and economic impacts associated with bur reuse are expected to be similar with other dental devices that are designated as disposable but are capable of being reused (e.g., scalpels, forceps).  相似文献   

16.

Purpose

The wood panel industry is one of the most important forest-based industries in Brazil. The medium density particleboard (MDP) is currently produced and consumed worldwide and represents about 50 % of the wood panel industry in Brazil. Unlike other regions, Brazilian MDP is produced from dedicated eucalyptus plantations and heavy fuel oil is an important energy source in MDP manufacture, which may result in a different environmental profile. This paper presents a life cycle assessment of MDP panel produced in Brazil and suggests improvement opportunities by assessing alternative production scenarios.

Methods

The cradle-to-gate assessment of 1 m3 of MDP produced in Brazil considered two main subsystems: forest and industrial production. Detailed inventories for Brazilian eucalyptus production and MDP industrial production were collected as a result of technical visits to Brazilian MDP producers (foreground systems) as well as literature review (mainly background systems). The potential environmental impacts of MDP were assessed in terms of seven impact categories using CML (abiotic depletion, acidification, global warming, eutrophication, and photochemical oxidation) and USEtox (ecotoxicity and human toxicity) impact assessment methods in order to identify the main hotspots.

Results and discussion

The industrial production was responsible for most of the impacts in all impact categories, except ecotoxicity (EC). The main hotspots identified were the use of heavy fuel oil (HFO) as a thermal energy source in MDP manufacture and the production of urea–formaldehyde (UF) resin used as synthetic adhesive. Glyphosate herbicide application in soil in forestry operations was the main responsible for the impacts in EC. Scenarios for HFO substitution were assessed and results showed that substituting HFO for in-mill wood residues or diesel leads to reduced environmental impacts.

Conclusions

The identification of the main hotspots in the MDP life cycle can assist the wood panel industry to improve their environmental profile. Further research should focus on UF resin production in order to reduce its environmental impacts as well as the possibility of using alternatives resins. Other sources of wood for MDP production could also be investigated (e.g., pine wood and wood residues) to assess potential improvements.  相似文献   

17.

Purpose

In order to reduce its environmental impact, the chemical industry no longer produces base chemicals such as ethylene, solely from fossil, but also from biomass-based feedstocks. However, a biomass option suitable for one region might not be as suitable for another region due to, e.g., long transport and the related environmental. Therefore, local biomass alternatives and the environmental impact related to the production of chemicals from these alternatives need to be investigated. This study assesses the environmental impact of producing ethylene from Swedish wood ethanol.

Methods

The study was conducted following the methodology of life cycle assessment. The life cycle was assessed using a cradle-to-gate perspective for the production of 50,000 tonnes ethylene/year for the impact categories global warming, acidification (ACP), photochemical ozone creation, and eutrophication (EP).

Results and discussion

The production of enzymes used during the life cycle had a significant effect on all investigated impacts. However, reduced consumption of enzyme product, which could possibly be realized considering the rapid development of enzymes, lowered the overall environmental impact of the ethylene. Another approach could be to use alternative hydrolyzing agents. However, little information on their environmental impact is available. An additional key contributor, with regard to ACP, EP, and POCP, was the ethanol production. Therefore, further improvements with regard to the process’ design may have beneficial effects on its environmental impact.

Conclusions

The study assessed the environmental impact of wood ethylene and pointed to several directions for improvements, such as improved enzyme production and reduced consumption of enzyme products. Moreover, the analysis showed that further investigations into other process options and increase of ethylene production from biomass are worth continued research.  相似文献   

18.

Purpose

The purpose of this study was to test the chain-organization environmental footprint (chain-OEF) approach by applying it to part of a pork production chain in Belgium. The approach is supposed to provide insight into the environmental impact of a specific production chain in an efficient manner by applying pragmatic data collection throughout the chain. This is achieved by allocating the environmental impact of each of the production sites to the product of interest using straightforward allocation rules.

Methods

The cradle-to-gate (up to retail) environmental impact of pork was determined by life cycle assessment (LCA), in line with the product and organisation environmental footprint guidelines (PEF and OEF; European Commission 2013b). Foreground data was gathered at a feed production site, two farmers, a slaughterhouse and a meat processing site. All foreground operations are part of the same pork production chain in Belgium. The chain was completed using background data from Ecoinvent v3.01 (Wernet et al. 2016), Agri-Footprint v1.0 (Blonk 2014), European Life Cycle Database v3.0, LCA Food Database (Nielsen et al. 2003) and OEF Sector Rules Retail (Humbert et al. 2015b). The impact was quantified using the international reference life cycle data system (ILCD) midpoint method for 14 impact categories, but focussing on climate change.

Results and discussion

The total carbon footprint of the cradle-to-gate pork production system equals 0.46 kg CO2-eq. (100 g pork)?1. This result is quite similar to that of earlier studies analysing the pork production chain: 0.58 and 0.57 kg CO2-eq. (100 g pork)?1 (Bracquené et al. 2011, Agri-Footprint 2014). Most of the carbon footprint was caused by feed production and more specifically, by the feed ingredients and their transport. Grains, soy and palm oil have the largest impact contributions. The farms are responsible for most of the remaining impact. N2O and CH4 emissions are the largest cause of greenhouse gas emissions at the farms. Also, in the other 13 considered impact categories, feed production and farming are responsible for more than half of the total impact, mostly followed by meat processing.

Conclusions

Applying the chain-OEF approach in this study has shown that a chain LCA can be performed successfully and pragmatic data collection allows obtaining LCA results relatively fast, especially for small or medium-sized enterprises (SMEs). Whereas data availability was not such an issue, the main bottlenecks identified are data management and the link of LCA to other disciplines such as engineering, policy, etc. which could increase the added value of LCA studies.
  相似文献   

19.

Purpose

Bio-based products are often considered sustainable due to their renewable nature. However, the environmental performance of products needs to be assessed considering a life cycle perspective to get a complete picture of potential benefits and trade-offs. We present a life cycle assessment of the global commodity ethanol, produced from different feedstock and geographical origin. The aim is to understand the main drivers for environmental impacts in the production of bio-based ethanol as well as its relative performance compared to a fossil-based alternative.

Methods

Ethanol production is assessed from cradle to gate; furthermore, end-of-life emissions are also included in order to allow a full comparison of greenhouse gas (GHG) emissions, assuming degradation of ethanol once emitted to air from household and personal care products. The functional unit is 1 kg ethanol, produced from maize grain in USA, maize stover in USA, sugarcane in North-East of Brazil and Centre-South of Brazil, and sugar beet and wheat in France. As a reference, ethanol produced from fossil ethylene in Western Europe is used. Six impact categories from the ReCiPe assessment method are considered, along with seven novel impact categories on biodiversity and ecosystem services (BES).

Results and discussion

GHG emissions per kilogram bio-based ethanol range from 0.7 to 1.5 kg CO2 eq per kg ethanol and from 1.3 to 2 kg per kg if emissions at end-of-life are included. Fossil-based ethanol involves GHG emissions of 1.3 kg CO2 eq per kg from cradle-to-gate and 3.7 kg CO2 eq per kg if end-of-life is included. Maize stover in USA and sugar beet in France have the lowest impact from a GHG perspective, although when other impact categories are considered trade-offs are encountered. BES impact indicators show a clear preference for fossil-based ethanol. The sensitivity analyses showed how certain methodological choices (allocation rules, land use change accounting, land use biomes), as well as some scenario choices (sugarcane harvest method, maize drying) affect the environmental performance of bio-based ethanol. Also, the uncertainty assessment showed that results for the bio-based alternatives often overlap, making it difficult to tell whether they are significantly different.

Conclusions

Bio-based ethanol appears as a preferable option from a GHG perspective, but when other impacts are considered, especially those related to land use, fossil-based ethanol is preferable. A key methodological aspect that remains to be harmonised is the quantification of land use change, which has an outstanding influence in the results, especially on GHG emissions.  相似文献   

20.

Purpose

The dairy sector covers multiple activities related to milk production and treatment for alimentary uses. Different dairy products are available in the markets, with yoghurt being the second most important in terms of production. The goal of this study was to analyse from a cradle-to-grave approach the environmental impacts and energy balance derived from the yoghurt (solid, stirred and drinking yoghurts) manufacture process in a specific dairy factory processing 100 % Portuguese raw milk.

Methods

The standard framework of life cycle assessment (LCA) was followed and inventory data were collected on site in the dairy factory and completed using the literature and databases. The following impact categories were evaluated adopting a CML method: abiotic depletion (ADP), acidification (AP), eutrophication (EP), global warming (GWP), ozone layer depletion (ODP), land competition (LC) and photochemical oxidants formation (POFP), with the energy analysis carried out based on the cumulative non-renewable fossil and nuclear energy demand (CED). A mass allocation approach was considered for the partitioning of the environmental burdens between the different products obtained since not only yoghurts are produced but also dairy fodder.

Results and discussion

The key processes from an environmental point of view were identified. Some of the potential results obtained were in line with other specific related studies where dairy systems were assessed from an LCA perspective. The production of the milk-based inputs (i.e. raw milk, concentrated and powdered milk) was the main factor responsible of the environmental loads and energy requirements, with remarkable contributions of 91 % of AP, 92 % of EP and 62 % of GWP. Other activities that have important environmental impacts include the production of the energy requirements in the dairy factory, packaging materials production and retailing. Potential alternatives were proposed in order to reduce the contributions to the environmental profile throughout the life cycle of the yoghurt. These alternatives were based on the minimisation of milk losses, reductions of distances travelled and energy consumption at retailing and household use, as well as changes to the formulation of the animal feed. All of these factors derived from light environmental reductions.

Conclusions

The main reductions of the environmental impact derived from yoghurt production can be primarily obtained at dairy farms, although important improvements could also be made at the dairy factory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号