首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial ischemia and reperfusion cause myocyte and vascular dysfunction, frequently termed "stunning." We hypothesized that inhibiting the Na(+)/H(+) exchanger subtype 1 isoform (NHE(1)) during ischemia and reperfusion limits myocardial and coronary microvascular stunning. Anesthetized rats completed 2 x 10-min coronary artery occlusions separated by 5-min of reperfusion, followed by 15 or 60 min of reperfusion. Vehicle (saline) or the NHE(1) inhibitor cariporide (HOE-642) was administered 15 min before ischemia and was continued throughout each protocol. After reperfusion, hearts were excised, and the reactivity of resistance arteries (internal diameter, approximately 120 microm) was assessed. The first derivative of left ventricular (LV) pressure, LV developed pressure, and LV systolic wall thickening were depressed (P < 0.05) similarly in vehicle- and cariporide-treated rats during ischemia and after 15 or 60 min of reperfusion compared with sham-operated animals that were not exposed to ischemia (i.e., controls). In vessels obtained after 15 min of reperfusion, the maximal response to acetylcholine-induced relaxation (10(-8)-10(-4) M) was blunted (P < 0.05) in vessels from vehicle- (approximately 35%) and cariporide-treated rats (approximately 55%) compared with controls (approximately 85%). However, the percent relaxation to acetylcholine was greater (P < 0.05) in cariporide-treated rats compared with vehicle-treated rats. Maximal contractile responses to endothelin-1 (10(-11)-10(-7) M) were increased (P < 0.05) similarly in vehicle- and cariporide-treated rats compared with controls. Relaxation to sodium nitroprusside (10(-4) M) was not different among groups. Results were similar in vessels obtained from animals after 60 min of reperfusion. These findings suggest that NHE(1) inhibition before coronary occlusion lessens ischemia-induced microvascular dysfunction for 15-60 min after reperfusion but does not alter myocardial contractile function in the area at risk.  相似文献   

2.
We hypothesized that myocardial contractile function and coronary arterial function are greater after ischemia and reperfusion in high-intensity treadmill-trained vs. sedentary rats. Rats performed 10 x 4-min bouts of treadmill running consisting of 2 min at 13 m/min + 2 min at 45-60 m/min (Etr) or were sedentary (Sed) for 12 wk. Animals then were instrumented to measure left ventricular (LV) contractility in response to three 15-min coronary occlusion (O) and 5-min reperfusion (R) cycles (Isc) or a sham operation (Sham). After the Isc and Sham protocols, hearts were excised and coronary arterial ( approximately 105 microm ID) function was evaluated by using isometric techniques. LV developed pressure, the first derivative of LV pressure at a developed pressure of 40 mmHg, and systolic blood pressure were not different between Etr (n = 14) and Sed (n = 7) rats before or after the Sham protocol. Furthermore, hemodynamic variables were similar in Etr (n = 14) and Sed (n = 13) animals before the Isc protocol and were depressed to the same degree by the three O-R cycles. Therefore, Etr did not alter myocardial contractile function in rats that were (i.e., Isc) or were not (i.e., Sham) exposed to ischemia and reperfusion. Acetylcholine-evoked relaxation (10-8 to 3 x 10-5 M) was greater (P < 0.05) in coronary arteries from Sham-Etr vs. Sham-Sed animals (5 of 8 doses tested) and Isc-Etr vs. Isc-Sed rats (3 of 8 doses tested). Maximal relaxation produced by sodium nitroprusside (10-4 M) was similar among groups. Vasocontractile responses produced by KCl (10-100 mM) and endothelin-1 (10-11-10-4 M) were greater (P < 0.05) in the presence vs. the absence of nitric oxide synthase inhibition (10-6 M NG-monomethyl-l-arginine) in vessels from Sham-Etr but not Sham-Sed rats and from Isc-Etr but not Isc-Sed rats. These findings suggest that Etr-evoked improvements in coronary function are maintained in small arteries even when exposed to ischemia and reperfusion.  相似文献   

3.
Potential protective effects of aerobic exercise training on the myocardium, before an ischemic event, are not completely understood. The purpose of the study was to investigate the effects of exercise training on contractile function after ischemia-reperfusion (Langendorff preparation with 15-min global ischemia/30-min reperfusion). Trabeculae were isolated from the left ventricles of both sedentary control and 10- to 12-wk treadmill exercise-trained rats. The maximal normalized isometric force (force/cross-sectional area; Po/CSA) and shortening velocity (Vo) in isolated, skinned ventricular trabeculae were measured using the slack test. Ischemia-reperfusion induced significant contractile dysfunction in hearts from both sedentary and trained animals; left ventricular developed pressure (LVDP) and maximal rates of pressure development and relaxation (+/-dP/dtmax) decreased, whereas end-diastolic pressure (EDP) increased. However, this dysfunction (as expressed as percent change from the last 5 min before ischemia) was attenuated in trained myocardium [LVDP: sedentary -60.8 +/- 6.4% (32.0 +/- 5.5 mmHg) vs. trained -15.6 +/- 8.6% (64.9 +/- 6.6 mmHg); +dP/dtmax: sedentary -54.1 +/- 4.7% (1,058.7 +/- 124.2 mmHg/s) vs. trained -16.7 +/- 8.4% (1,931.9 +/- 188.3 mmHg/s); -dP/dtmax: sedentary -44.4 +/- 2.5% (-829.3 +/- 52.0 mmHg/s) vs. trained -17.9 +/- 7.2% (-1,341.3 +/- 142.8 mmHg/s); EDP: sedentary 539.5 +/- 147.6%; (41.3 +/- 6.0 mmHg) vs. trained 71.6 +/- 30.6%; 11.4 +/- 1.2 mmHg]. There was an average 26% increase in Po/CSA in trained trabeculae compared with sedentary controls, and this increase was not affected by ischemia-reperfusion. Ischemia-reperfusion reduced Vo by 39% in both control and trained trabeculae. The relative amount of the beta-isoform of myosin heavy chain (MHC-beta) was twofold greater in trained trabeculae as well as in the ventricular free walls. Despite a possible increase in the economy in the trained heart, presumed from a greater amount of MHC-beta, ischemia-reperfusion reduced Vo, to a similar extent in both control and trained animals. Nevertheless, the trained myocardium appears to have a greater maximum force-generating ability that may, at least partially, compensate for reduced contractile function induced by a brief period of ischemia.  相似文献   

4.
The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (-log EC(50)) nor maximal responses (E(max)) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23+/-0.06) compared to SD/IR group (7.85+/-0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75+/-0.06 and TR/IR: 6.62+/-0.04) compared to SD/SHAM (7.33+/-0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place.  相似文献   

5.
Chronic hypoxia alters contractile sensitivity of isolated arteries to alpha-adrenergic stimulation and other agonists. However, most studies have been performed in thoracic aortas or other large vessels making little contribution to vascular resistance in their respective circulations. To determine the effect of chronic hypoxia on the vasoconstrictor response in a small, resistance-sized vessel, we studied second and third generation middle cerebral arteries (MCA; approximately 75-microm internal diameter before mounting). MCA were isolated from normoxic (inspired oxygen = 125 Torr) and hypoxic (8 wk at 3,960 m; inspired oxygen = 90 Torr) guinea pigs, and their vasoconstrictor responses were determined to the thromboxane mimetic U-46619 by using dual-pipette video microscopy. Arteries from hypoxic animals had greater contractile sensitivity to U-46619 compared with those of the normoxic animals (-log EC50 = 7.86 +/- 0.11 vs. 7.62 +/- 0.06, respectively, P < 0.05). Addition of the nitric oxide (NO) inhibitor nitro-L-arginine (200 microM) to the vessel bath eliminated the differences in contractile sensitivity between the MCA from the normoxic and chronically hypoxic groups. Supplementation with L-arginine in the drinking water sufficient to raise plasma L-arginine levels 41% reduced MCA contractile sensitivity to U-46619 in the normoxic group (-log EC50 = 7.22 +/- 0.31, P < 0.05 compared with the nonsupplemented normoxic group) but not in the chronically hypoxic group. These results show that chronic hypoxia increases the sensitivity of the MCA to the vasoconstrictor U-46619, likely because of a reduction in NO production and/or activity.  相似文献   

6.
Isolated guinea pig hearts subjected to 25-min total normothermic ischemia and 30-min reperfusion with the initial rate exhibited a great rise in isovolumic diastolic pressure while the contractile function recovered to 34 +/- 4% of initial value. Reperfusion with gradually increased rate from 13% of initial rate to 100% resulted in better recovery of the contractile function--to 54 +/- 3% and markedly less rise in the diastolic pressure. This coincided with 28% less inosine loss. More better recovery of the myocardial contractile function (to 80 +/- 5%) was observed in experiments in which gradual reperfusion was combined with recirculation. In both gradual reperfusion series, the recovery of the heart rate and the contractile function were much delayed during first 5 min reperfusion and were associated with a rise in coronary resistance.  相似文献   

7.
Human femoral, internal mammary, and gastroepiploic arteries and saphenous veins are used as bypass grafts for coronary surgery or for reconstruction in arterial occlusive disease. We have characterized the contractile responses of these vessels to various agents that are liberated during cardiac or vascular surgery. In organ baths, U46619 (a stable thromboxane A2 mimetic), norepinephrine, endothelin-1, angiotensin II, and KCl caused concentration-dependent contractions in all vessels tested. Leukotriene C4 did not induce any contraction in the arteries, whereas a contraction was obtained in the saphenous vein rings. U46619 induced the most powerful contraction in all vessels tested. The pD2 values for each agent did not differ among the different vessels. When responses were expressed as a percentage of KCl-induced contraction, the contraction of endothelin-1 (151+/-5%) and leukotriene C4 (43+/-5%) was more significant on saphenous veins than on arteries. In conclusion, thromboxane A2 appears to be the most potent endogenous constricting agent on different human vascular beds. Our second finding is that saphenous veins are more sensitive to contract to leukotriene C4 and endothelin-1 than arteries. These properties may influence early and (or) long-term vein graft patency.  相似文献   

8.
We studied the effects of the thromboxane analog, U46619, infused into the left anterior descending (LAD) artery of intact dogs before and after producing endothelial denudation of the mid portion of the LAD. Proximal artery cross-sectional area (CSA) decreased by 47% with 0.1 microgram/min infusion of U46619 with intact and denuded endothelium, while resting CSA reduced spontaneously following denudation. Coronary resistance vessels demonstrated a marked constrictor response to U46619 with a rise in resistance and a fall in flow and myocardial O2 consumption. U46619 produces significant narrowing of proximal epicardial coronary arteries as well as resistance coronary vessels. This effect could cause ischemia in patients with moderate coronary atherosclerosis.  相似文献   

9.
Isolated coronary arteries from diabetic dogs presented different contractile response to U-46619 to prostacyclin (PGI2) and to arachidonic acid (AA) than those of normal dogs. The stimulatory effect of the synthetic endoperoxide analogue U-46619, was significantly higher in the diabetic condition than in preparations from normal animals. On the other hand, while PGI2 evoked a dose-dependent relaxation of normal coronary arteries, diabetic vessels were not relaxed by low concentration of PGI2 whereas higher ones produced a distinct constrictor effect. Additionally, inhibitors of prostaglandins and thromboxane (TX) biosynthesis such as corticosterone, indomethacin, acetylsalicylic acid, imidazole and L-8027, abolished the stimulatory effect of PGI2 in coronary arteries from diabetic dogs. AA relaxed coronaries from normal dogs and constricted those from diabetic animals, this action being inhibited by imidazol and L-8027.The present results suggests that: a) coronary vessels from diabetic dogs are more reactive to an endoperoxide analogue than normal preparations and b) PGI2 and AA probably contract diabetic coronary arteries via the participation of a TX like material. It is then plausible that this effect could be tentatively ascribed to the production of a prostaglandin constricting substance including als the probable generation of a TXA2-like agonist.  相似文献   

10.
Rho activation in excitatory agonist-stimulated vascular smooth muscle   总被引:7,自引:0,他引:7  
Small GTPase Rho and its downstream effector, Rho kinase, havebeen implicated in agonist-stimulated Ca2+ sensitization of20-kDa myosin light chain (MLC20) phosphorylation andcontraction in smooth muscle. In the present study we demonstrated forthe first time that excitatory receptor agonists induce increases inamounts of an active GTP-bound form of RhoA, GTP-RhoA, in rabbit aorticsmooth muscle. Using a pull-down assay with a recombinant RhoA-bindingprotein, Rhotekin, we found that a thromboxane A2 mimetic,U-46619, which induced a sustained contractile response, induced asustained rise in the amount of GTP-RhoA in a dose-dependent mannerwith an EC50 value similar to that for the contractile response. U-46619-induced RhoA activation was thromboxaneA2 receptor-mediated and reversible. Other agonistsincluding norepinephrine, serotonin, histamine, and endothelin-1 (ET-1)also stimulated RhoA, albeit to lesser extents than U-46619. Incontrast, ANG II and phorbol 12,13-dibutyrate failed to increaseGTP-RhoA. The tyrosine kinase inhibitor genistein substantiallyinhibited RhoA activation by these agonists, except for ET-1. Thusexcitatory agonists induce Rho activation in an agonist-specificmanner, which is thought to contribute to stimulation ofMLC20 phosphorylation Ca2+ sensitivity.

  相似文献   

11.
The effect of endurance training on the resistance of the heart to left ventricular (LV) functional deficit and infarction after a transient regional ischemia and subsequent reperfusion was examined. Female Sprague-Dawley rats were randomly assigned to an endurance exercise training (Tr) group or a sedentary (Sed) control group. After 20 wk of training, hearts were excised, perfused, and instrumented for assessment of LV mechanical function, and the left anterior descending coronary artery was occluded to induce a transient regional ischemia (1 h) that was followed by 2 h of reperfusion. Throughout much of the regional ischemia-reperfusion protocol, coronary flow rates, diastolic function, and LV developed pressure were better preserved in hearts from Tr animals. During the regional ischemia, coronary flow to myocardium outside the ischemic zone at risk (ZAR) was maintained in Tr hearts, whereas it progressively fell in Sed hearts. On release of the coronary artery ligature, flow to the ZAR was greater in Tr than in Sed hearts. Infarct size, expressed as a percentage of the ischemic ZAR, was significantly smaller in hearts from Tr rats (24 +/- 3 vs. 32 +/- 2% of ZAR, P < 0.05). Mn- and CuZn-SOD protein expression were higher in the LV myocardium of Tr animals (P < 0.05 for both isoforms). Our data indicate that long-term exercise training leads to infarct sparing and better maintenance of coronary flow and mechanical function after ischemia-reperfusion.  相似文献   

12.
Clinical and experimental evidence has shown that myocardial ischemia activates cardiac spinal afferents that mediate sympathoexcitatory reflex responses. During myocardial ischemia, thromboxane A2 (TxA2) is released in large quantities by activated platelets in the coronary circulation of patients with coronary artery disease. We hypothesized that endogenous TxA2 contributes to sympathoexcitatory reflexes during myocardial ischemia through stimulation of TxA2/prostaglandin endoperoxide (TP) receptors. Regional myocardial ischemia was induced by occlusion of a diagonal branch of left anterior descending coronary artery of anesthetized cats. Hemodynamic parameters and renal sympathetic nerve activity were recorded after sinoaortic denervation and bilateral vagotomy. Regional myocardial ischemia evoked significant increases in mean blood pressure (122+/-10 vs. 139+/-12 mmHg, before vs. ischemia), aortic flow (153+/-18 vs. 167+/-20 ml/min), first derivative of left ventricular pressure at 40-mmHg developed pressure (2,736+/-252 vs. 2,926+/-281 mmHg/s), systemic vascular resistance (0.6+/-0.1 vs. 0.9+/-0.12 peripheral resistance units), and renal sympathetic nerve activity (by 22%). The reflex nature of the excitatory responses was confirmed by observing its disappearance after blockade of cardiac nerve transmission with intrapericardial 2% procaine treatment. Moreover, application of U-46619 (2.5-10 microg), a TxA2 mimetic, on the heart caused graded increases in mean arterial pressure and renal nerve activity, responses that were abolished 3 min after local blockade of cardiac neural transmission with intrapericardial procaine. BM 13,177 (30 mg/kg iv), a selective TP receptor antagonist, eliminated the reflex responses to U-46619 and significantly attenuated the excitatory responses during brief (5 min) regional myocardial ischemia. The sympathoexcitatory reflex responses to U-46619 were unchanged by blockade of histamine H1 receptors with pyrilamine and serotonin 5-HT3 receptors with tropisetron, indicating specificity of this TP receptor agonist. These data indicate that endogenous TxA2 participates in myocardial ischemia-mediated sympathoexcitatory reflex responses through a TP receptor mechanism.  相似文献   

13.
Preconditioning with brief periods of ischemia-reperfusion (I/R) induces a delayed protection of coronary endothelial cells against reperfusion injury. We assessed the possible role of nitric oxide (NO) produced during prolonged I/R as a mediator of this endothelial protection. Anesthetized rats were subjected to 20-min cardiac ischemia/60-min reperfusion, 24 h after sham surgery or cardiac preconditioning (1 x 2-min ischemia/5-min reperfusion and 2 x 5-min ischemia/5-min reperfusion). The nonselective NO synthase (NOS) inhibitor l-NAME, the selective inhibitors of neuronal (7-nitroindazole) or inducible (1400W) NOS, or the peroxynitrite scavenger seleno-l-methionine were administered 10 min before prolonged ischemia. Preconditioning prevented the reperfusion-induced impairment of coronary endothelium-dependent relaxations to acetylcholine (maximal relaxation: sham 77 +/- 3; I/R 44 +/- 6; PC 74 +/- 5%). This protective effect was abolished by l-NAME (41 +/- 7%), whereas 7-NI, 1400W or seleno-l-methionine had no effect. The abolition of preconditioning by l-NAME, but not by selective nNOS or iNOS inhibition, suggests that NO produced by eNOS is a mediator of delayed endothelial preconditioning.  相似文献   

14.
Exercise training enhances endothelium-dependent coronary vasodilatation, improving perfusion and contractile function of collateral-dependent myocardium. Paradoxically, studies from our laboratory have revealed increased Ca(2+)-dependent basal active tone in collateral-dependent arteries of exercise-trained pigs. In this study, we tested the hypothesis that exercise training enhances agonist-mediated contractile responses of collateral-dependent arteries by promoting Ca(2+) sensitization. Ameroid constrictors were surgically placed around the proximal left circumflex coronary (LCX) artery of female Yucatan miniature pigs. Eight weeks postoperatively, pigs were randomized into sedentary (pen confined) or exercise-training (treadmill run; 5 days/wk; 14 wk) groups. Arteries (~150 μm luminal diameter) were isolated from the collateral-dependent and nonoccluded (left anterior descending artery supplied) myocardial regions, and measures of contractile tension or simultaneous tension and intracellular free Ca(2+) concentration levels (fura-2) were completed. Exercise training enhanced contractile responses to endothelin-1 in collateral-dependent compared with nonoccluded arteries, an effect that was more pronounced in the presence of nitric oxide synthase inhibition (N(ω)-nitro-l-arginine methyl ester; 100 μM). Contractile responses to endothelin-1 were not altered by coronary occlusion alone. Exercise training produced increased tension at comparable levels of intracellular free Ca(2+) concentration in collateral-dependent compared with nonoccluded arteries, indicative of exercise training-enhanced Ca(2+) sensitization. Inhibition of PKC (calphostin C; 1 μM), but not Rho-kinase (Y-27632, 10 μM; or hydroxyfasudil, 30 μM), abolished the training-enhanced endothelin-1-mediated contractile response. Exercise training also increased sensitivity to the PKC activator phorbol 12,13-dibutyrate in collateral-dependent compared with nonoccluded arteries. Taken together, these data reveal that exercise training enhances endothelin-1-mediated contractile responses in collateral-dependent coronary arteries likely via increased PKC-mediated Ca(2+) sensitization.  相似文献   

15.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

16.
17.
《Free radical research》2013,47(3-6):169-180
Numerous studies have indirectly, suggested that oxygen-derived free radicals play an important path-ogenetic role in the prolonged depression of contractile function observed in myocardium reperfused after reversible ischemia (myocardial “stunning”). In order to provide direct evidence for the oxy-radical hypothesis of stunning, we administered the spin trap, α-phenyl N-tert-butyl nitrone (PBN), to open-chest dogs undergoing a 15-min coronary artery occlusion followed by reperfusion. Plasma of local coronary venous blood was analyzed by electron paramagnetic resonance (EPR) spectroscopy. EPR signals characteristic of radical adducts of PBN appeared during ischemia and increased dramatically in the first few minutes after reperfusion. After this initial burst, the production of adducts abated but did not cease, persisting up to 3 h after reflow. The production of PBN adducts after reperfusion was inversely related to collateral flow during ischemia. PBN itself enhanced recovery of contractile function. indicating that the radicals trapped may play a pathogenetic role in myocardial stunning. Superoxide dismutase plus catalase attenuated PBN adduct production and, at the same time, improved recovery of contractile function. Antioxidant therapy given 1 min before reperfusion suppressed PBN adduct production and improved contractile recovery; however, the same therapy given 1 min after reperfusion did not suppress early radical production and did not attenuate contractile dysfunction. After i.v. administration, the elimination half-life of PBN was estimated to be approximately 4–5 h. The results demonstrate that 1) free radicals are produced in the stunned myocardium in intact animals; 2) inhibition of free radical production results in improved contractile recovery; and 3) the free radicals important in causing dysfunction are produced in the first few minutes of reperfusion. Taken together, these studies provide cogent evidence supporting the oxy-radical hypothesis of stunning in open-chest dogs. It is now critical to determine whether these results can be reproduced in conscious animal preparations.  相似文献   

18.
We examined the effects of sprint training on left ventricular diastolic stiffness during normoxia and after ischemia-reperfusion (I/R). Thirty-seven, male Sprague-Dawley rats, weighing 150-175 g at the initiation of the experiment, were randomly assigned to a sedentary, control group (n = 20) or to a high-intensity, sprint-trained group (n = 17). Animals were trained 5 days/wk on a motor-driven treadmill for 6 wk. High-intensity sprint training consisted of running five 1-min sprints at 75 m/min, 15% grade, interspersed with 1-min active recovery runs at a speed of 20 m/min, 15% grade. Langendorff-derived isolated heart performance was measured before and after 20 min of no-flow ischemia followed by 30 min of reperfusion. Isolated myocytes were harvested from a subset of postischemic hearts. Sprint training reduced Langendorff-derived LV chamber stiffness (P < 0.05) and induced a rightward shift in the LV pressure-volume relationship during both normoxic perfusion and after I/R. LV developed pressure after I/R was also better preserved in hearts obtained from sprint-trained animals (P < 0.05), a result that is in part related to a lower postischemic LV chamber stiffness in sprint-trained hearts. The putative impact of sprint training on postischemic LV chamber stiffness was masked by glycolytic inhibition with iodoacetate, suggesting that glycolysis was involved in the better postischemic recovery observed in sprint-trained hearts. There was a tendency for enhanced postischemic cardiomyocyte shortening in sprint-trained cardiomyocytes compared with control. The rate of myocyte relaxation, i.e., time for 50% relaxation of the Ca(2+) transient amplitude, was similar between groups. These data suggest that additional mechanisms unrelated to Ca(2+) were involved in sprint-induced protection from ischemia-reperfusion-induced LV diastolic dysfunction.  相似文献   

19.
Potentiation of vagal contractile response by thromboxane mimetic U-46619   总被引:1,自引:0,他引:1  
We studied the effect of the thromboxane mimetic U-46619 on tracheal smooth muscle contraction caused by bilateral stimulation of the vagus nerves in 14 mongrel dogs in situ. The parasympathetic contractile response was studied isometrically after beta-adrenergic blockade with 2 mg/kg iv propranolol plus 20 micrograms X kg-1 X min-1 continuous intravenous infusion and blockade of endogenous prostaglandin synthesis with 5 mg/kg iv indomethacin. An initial frequency-response curve was generated by electrical stimulation of the caudal ends of cut cervical vagi over the range of frequencies 2-25 Hz (constant 25 V) at 15-s intervals. In five dogs, 10(-10) to 10(-8) mol of the thromboxane mimetic (15S)-hydroxyl-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U-46619) was injected selectively into the tracheal arterial circulation, causing a transient contractile response (less than or equal to 10 g/cm). Additional frequency response studies were generated 7 min before and 1, 15, 30, 45, and 60 min after U-46619. Substantial augmentation of tracheal contraction to efferent vagal stimulation was observed after U-46619 for all frequencies greater than 4 Hz (P less than 0.02). Augmentation of vagally mediated contraction was not observed in four other dogs after equivalent tracheal contraction was elicited without U-46619. Similarly, in four separate dogs, augmentation of tracheal contraction was not observed when acetylcholine was given instead of vagal stimulation after U-46619. We conclude that the thromboxane analogue, U-46619, causes augmentation of tracheal contractile response induced by efferent vagus nerve stimulation. Potentiation is caused by a prejunctional action of U-46619 and is not induced by nonspecific precontraction with another agonist.  相似文献   

20.
The degree of myocardial oxygen delivery (Do2) that is necessary to reestablish functional contractile activity after short-term global ischemia in heart is not known. To determine the relationship between Do2 and recovery of contractile and metabolic functions, we used tissue NADH fluorometric changes to characterize adequacy of reperfusion flow. Isolated perfused rat hearts were subjected to global ischemia and were reperfused at variable flow rates that ranged from 1 to 100% of baseline flow. Myocardial function and tissue NADH changes were continuously measured. NADH fluorescence rapidly increased and plateaued during ischemia. A strong inverse logarithmic correlation between NADH fluorescence and reperfusion Do2 was demonstrated (r = -0.952). Left ventricular function (rate-pressure product) was inversely related to NADH fluorescence at reperfusion flows from 25 to 100% of baseline (r = -0.922) but not at lower reperfusion flow levels. An apparent reperfusion threshold of 25% of baseline Do2 was necessary to resume contractile function. At very low reperfusion flows (1% of baseline), another threshold flow was identified at which NADH levels increased beyond that observed during global ischemia (3.4 +/- 3.0%, means +/- SE, n = 9), which suggests further reduction of the cellular redox state. This NADH increase at 1% of baseline reperfusion flow was blocked by removing glucose from the perfusate. NADH fluorescence is a sensitive indicator of myocardial cellular oxygen utilization over a wide range of reperfusion Do2 values. Although oxygen is utilized at very low flow rates, as indicated by changes in NADH, a critical threshold of approximately 25% of baseline Do2 is necessary to restore contractile function after short-term global ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号