首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The success of introduced species is often facilitated by escape from the effects of natural predators and parasites. Introduced species can profit from this favourable situation, attaining higher population densities and greater individual sizes in novel areas. In this study, somatic condition and parasite infection were compared between native and non-native populations of Neogobius kessleri Günther; introduced only within the interconnected Danube and Rhine River system, and N. melanostomus (Pallas); widely introduced throughout several river systems in Europe and North America. Higher values of Fulton’s condition factor were observed in non-native populations of both goby species. Neogobius melanostomus attained higher gonadosomatic index values in non-native populations, indicating potential increased investment in reproduction in its new area. A lower splenosomatic index was observed in non-native populations, especially in N. melanostomus. Parasite infracommunity richness and mean abundance were higher in N. kessleri in both native and non-native populations, suggesting higher susceptibility of N. kessleri to these parasites. Non-native populations of both hosts showed higher infra-community richness as a result of acquiring parasites native to the new area, but lower parasite abundance. Differences in success of the introduction and establishment in new areas between the two fish species may be associated with a relatively low parasite infection rate and a higher gonadosomatic index in non-native populations of N. melanostomus in comparison to N. kessleri.  相似文献   

2.
Species invasions can alter food web structure and change ecosystem-level functioning, but it is often unclear how these invasions may affect the life history of native species. The Lake Sturgeon (Acipenser fulvescens), a large long-lived native fish species in the Great Lakes, has increased in abundance in the lower Niagara River and nearby Lake Ontario during a period of invasive species-induced ecosystem change precipitated most recently by Dreissenid mussels (Driessena polymorpha and Driessena bugensis) and Round Goby (Neogobius melanostomus). Material taken from cross-sections of archived pectoral spines from Niagara River Lake Sturgeon captured in 1998–2000 and 2010–2012 were analyzed for stable isotopes across discrete growth zones to provide an ontogenetic assessment of diet, and diet analysis of Lake Sturgeon captured in 2014 was conducted to assess the contribution of invasive prey. Round Goby was the most important Lake Sturgeon prey item (86% by weight) in 2014, which corroborated results of δ15N and δ13C. Lake Sturgeon captured after the invasion of Round Goby exhibited ontogenetic changes in δ15N that differed from pre-Round Goby patterns, though this effect was weaker for δ13C. Values of δ15N from spine growth zones indicated non-linear increases in trophic position with age and increased rate of δ15N enrichment after the Round Goby invasion. We conclude that Round Goby establishment in western Lake Ontario changed the feeding ecology of Lake Sturgeon, which may have a positive effect on population growth for this native species.  相似文献   

3.
1. Termites consume a wide range of plant material at different stages of decomposition and, accordingly, have been classified into ‘feeding groups’. African savannah ecosystems harbour many termite species, yet most belong to Termitidae. Especially striking is the co‐occurrence of up to eight Macrotermitinae and five Trinervitermes species, each having apparently identical trophic niches, i.e. fungus‐growers and grass‐feeders, respectively. 2. This study examined stable isotope signatures of 15N and 13C of West African savannah termites to test the validity of existing feeding group concepts and whether there is fine‐scaled niche differentiation of species within feeding groups. Despite a phylogenetic signal that species from the same subfamily and congenerics have correlated isotope signatures, evidence of niche differentiation was found. 3. Interestingly, species with similar δ15N values generally differed in δ13C values, and vice versa. The dominant mound‐building fungus‐grower Macrotermes bellicosus had the lowest δ15N values among all fungus‐growers, indicating that it occupies a different trophic niche. 4. This fine‐scaled differentiation along the trophic niche axis can help to explain the coexistence of so many apparently identical termite species.  相似文献   

4.
Multiple anthropogenic pressures including the widespread introductions of non‐native species threaten biodiversity and ecosystem functioning notably by modifying the trophic structure of communities. Here, we provided a global evaluation of the impacts of non‐native species on the isotopic structure (δ13C and δ15N) of freshwater fish communities. We gathered the stable isotope values (n = 4030) of fish species in 496 fish communities in lentic (lakes, backwaters, reservoirs) and lotic (running waters such as streams, rivers) ecosystems throughout the world and quantified the isotopic structure of communities. Overall, we found that communities containing non‐native species had a different isotopic structure than communities without non‐native species. However, these differences varied between ecosystem types and the trophic positions of non‐native species. In lotic ecosystems, communities containing non‐native species had a larger total isotopic niche than communities without non‐native species. This was primarily driven by the addition of non‐native predators at the top of the food chain that increased δ15N range without modifying the isotopic niche size of native species. In lentic ecosystems, non‐native primary consumers increased δ15N range and this was likely driven by an increase of resource availability for species at higher trophic levels, increasing food chain length. The introduction of non‐native secondary consumers at the centre of the isotopic niche of recipient communities decreased the core isotopic niche size, the δ13C range of recipient communities and the total isotopic niche of coexisting native species. These results suggested a modified contribution of the basal resources consumed (e.g. multi‐chain omnivory) and an increase level of competition with native species. Our results notably imply that, by affecting the isotopic structure of freshwater fish communities at a global scale, non‐native species represent an important source of perturbations that should be accounted for when investigating macro‐ecological patterns of community structure and biotic interactions.  相似文献   

5.
When present in sympatry, invasive species have the potential to amplify or mitigate their ecological impacts through their trophic interactions. Their trophic niches may overlap, limiting impacts to specific trophic levels or functional groups; alternatively, they may diverge, with this niche differentiation resulting in contrasting impacts between species on the ecosystem. Here, we tested the trophic consequences for the global freshwater invaders common carp Cyprinus carpio, signal crayfish Pacifastacus leniusculus and topmouth gudgeon Pseudorasbora parva when their populations were in sympatry and under varying population biomass across six adjacent and identical ponds. Through using corrected values of δ13C and δ15N, stable isotope niche metrics revealed that when the species were analysed together across all of the ponds, the output indicated their potential to share trophic resources. This was because niche overlap was evident at the species level: P. parva shared 19.6 and 30.4 % of their isotopic niche with C. carpio and P. leniusculus respectively. At the population level, however, the invaders had no niche overlap when present in sympatry and, instead, diverged in their trophic niche space, with C. carpio occupying the highest trophic levels, followed by P. parva and then P. leniusculus. We suggest that at the population level within in each pond, niche differentiation was facilitated by each species being plastic in their resource use, allowing their co-existence in ponds that may otherwise have limited their ability to co-exist through resource limitation.  相似文献   

6.
Sympatric species are expected to differ in ecological requirements to minimize niche overlap and avoid competition. Here we assess the trophic interactions among three coexisting dolphin species from southern Brazil: the franciscana dolphin (Pontoporia blainvillei), the Guiana dolphin (Sotalia guianensis), and the Lahille's bottlenose dolphin (Tursiops truncatus gephyreus). We evaluated temporal variation in carbon (δ13C) and nitrogen (δ15N) isotope values of bone collagen to examine potential dietary shifts resulting from increased fishing activity over the past three decades. We estimated the degree of niche overlap among these species and the contribution of potential prey sources to their diet. δ15N values were consistent among species and across years, while δ13C values increased for Guiana dolphins and decreased for bottlenose dolphins, suggesting changes in diet and/or foraging habitats through time. The similar δ13C and δ15N values and the high niche overlap between Guiana and bottlenose dolphins indicate that these species are primarily feeding on demersal prey. The franciscana diet is primarily composed of pelagic prey, resulting in a lower niche overlap in comparison with the other dolphin species. Our study provides further information about the foraging ecology of this unique dolphin community in southern Brazil with implications for its management and conservation.  相似文献   

7.
Evolution is known to act on contemporary timescales and invasive organisms are often used to study rapid evolutionary changes of geno- and phenotypes under natural conditions. The ability and speed of local adaptation is discussed as a key character triggering successful invasions. Variation of body shape among populations of two highly invasive, sympatric Ponto-Caspian goby species (Teleostei: Gobiidae) with a comparable invasion history in the upper Danube River, i.e. Neogobius melanostomus and Ponticola kessleri, was assessed using geometric morphometric methods. Phenotypic variation established within less than 15 generations was evident in both species. It was mainly correlated with geographical location, but in N. melanostomus also with substrate type, an ecological variable reflecting habitat quality. The two species differed in their degree of intraspecific variation which was more pronounced in N. melanostomus, the numerically dominant invader in the upper Danube. Body shape variation significantly correlating with geographical rather than ecological variables suggests a heritable component and renders phenotypic plasticity as a lone explanation unlikely. Patterns of body shape similarity among upper Danubian goby populations suggest a stepping-stone rather than a continuous expansion model for both species, where multiple introductions, possibly from various origins, may have shaped differentiation.  相似文献   

8.
Differences in trophic niches among carabid beetles (Coleoptera: Carabidae) co‐occurring on the forest floors of warm temperate forests in central Japan were studied using carbon (δ13C) and nitrogen (δ15N) stable isotope analyses. Different carabid species showed similar δ15N values, which were higher than those of their possible invertebrate prey (herbivores and detritivores) collected from the litter layer, indicating that these species were consumers in the same trophic level. In contrast, δ13C values differed among carabid species, indicating interspecific differences in prey animals. The variation in the δ13C value was larger in summer than in autumn. In summer, δ13C values indicated that some carabids depended highly on either grazing (low δ13C values) or detrital sources (high δ13C values) within the food chain [Chlaenius posticalis Motschulsky and Haplochlaenius costiger (Chaudoir), respectively], although other species with intermediate δ13C values likely depended on both. The latter group of species comprised mostly two dominant genera (Carabus and Synuchus). Although congeners might have similar feeding habits, the stable isotope ratios indicated trophic niche differences between adults of different species and between adults and larvae of the same genus.  相似文献   

9.
Isotopic niche and resource partitioning were examined between striped marlin (Kajikia audax) and swordfish (Xiphias gladius) using stable isotope ratios from spine bone and muscle samples. The δ13C (13C/12C) and δ15N (15N/14N) values were measured in annual growth bands from fin spines and muscle collected from striped marlin and swordfish off Baja California Sur to evaluate the trophic interaction between these two species, the relative contribution of the main prey and the isotopic niche within two different timescales. Mean trophic level (TL) values were different when tissues were compared with the highest value found in muscle samples from K. audax. When TL was analysed in all growth bands for both species, no changes were detected throughout time, suggesting only minor differences in feeding habits between these species. We determined that Dosidicus gigas, Sthenoteuthis oualaniensis, and Ancistrocheirus lesueurii were the most important prey for both species, but the relative contribution of each of them to the diet differed. There is likely no trophic overlap between K. audax and X. gladius off Baja California Sur, as K. audax occupied a larger isotopic niche with more diverse prey than X. gladius.  相似文献   

10.
This study presents a detailed comparative analysis of external morphology of four of the most invasive goby species in Europe (round goby Neogobius melanostomus, bighead goby Ponticola kessleri, monkey goby Neogobius fluviatilis and racer goby Ponticola gymnotrachelus) and interprets some ecological requirements of these species based on their morphological attributes. The results are evaluated within an ontogenetic context, and the morphological differences between the species are discussed in terms of the question: can special external shape adaptations help to assess the invasive potential of each species? The morphometric analyses demonstrate important differences between the four invasive gobies. Neogobius melanostomus appears to have the least specialized external morphology that may favour its invasive success: little specialization to habitat or diet means reduced restraints on overall ecological requirements. The other three species were found to possess some morphological specializations (P. kessleri to large prey, N. fluviatilis to sandy habitats and P. gymnotrachelus to macrophytes), but none of these gobies have managed to colonize such large areas or to reach such overall abundances as N. melanostomus.  相似文献   

11.
The aim of this study was to determine whether juvenile scalloped hammerhead sharks (Sphyrna lewini) use the south-eastern Gulf of California as a nursery and feeding area. This information could help lay the groundwork required for the conservation of this endangered species. To address this, we carried out stable isotope (δ15N and δ13C) and stomach content analyses of sharks caught between 2000 and 2004 in Mazatlan, Mexico. Stomach contents and δ13C values indicated that S. lewini is a predator that feeds on benthic prey near the coast. Differences in δ15N average values between sizes classes (<100 vs. >100 cm) suggest that there was an ontogenetic change in this shark’s feeding habits and also in their living environment (from benthic areas to pelagic areas). The trophic position indicated that S. lewini is a tertiary consumer, but with a high degree of trophic plasticity, and thus, different trophic roles, highlighting the importance of this predator as a regulator of prey populations. Finally, the linear isotopic relationship between S. lewini and its prey indicates a long residency within the Mazatlan area. Our results demonstrate that the south-eastern Gulf of California is a nursery area that offers abundant food for juvenile scalloped hammerhead sharks.  相似文献   

12.
The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of 15N and 13C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ15N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ15N values and greater δ13C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ15N ≊ 2.7‰ and Δ13C ≊ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.  相似文献   

13.
The diets of four common mesopredator fishes were examined in the back‐reef habitat of a subtropical fringing reef system during the summer months. Quantitative gut content analyses revealed that crustaceans, represented >60% of ingested prey (% mass) by the latticed sand‐perch Parapercis clathrata, brown dottyback Pseudochromis fuscus and half‐moon grouper Epinephelus rivulatus. Dietary analyses also provided insights into ontogenetic shifts. Juvenile P. fuscus ingested large numbers of crustaceans (amphipods and isopods); these small prey were rarely found in larger individuals (<1% of ingested mass). Fishes also made an important contribution to the diets of all three species representing 10–30% of ingested mass. Conversely, the sand lizardfish Synodus dermatogenys fed exclusively on fishes including clupeids, gobies and labrids. Differences in the gut contents of the four species recorded were not apparent using stable isotope analysis of muscle tissues. The similarity of δ13C values in muscle tissues suggested that carbon within prey was derived from primary producers, with comparable carbon isotope signatures to corals and macroalgae, whilst similarities in δ15N values indicated that all four species belonged to the same trophic level. Thus, interspecific differences between mesopredator diets were undetectable when using stable isotope analysis which suggests that detailed elucidation of trophic pathways requires gut content analyses.  相似文献   

14.
Changing climate is forcing many terrestrial and marine species to extend their ranges poleward to stay within the bounds of their thermal tolerances. However, when such species enter higher latitude ecosystems, they engage in novel interactions with local species, such as altered predator–prey dynamics and competition for food. Here, we evaluate the trophic overlap between range‐extending and local fish species along the east coast of temperate Australia, a hotspot for ocean warming and species range extensions. Stable isotope ratios (δ15N and δ13C) of muscle tissue and stomach content analysis were used to quantify overlap of trophic niche space between vagrant tropical and local temperate fish communities along a 730 km (6°) latitudinal gradient. Our study shows that in recipient temperate ecosystems, sympatric tropical and temperate species do not overlap significantly in their diet—even though they forage on broadly similar prey groups—and are therefore unlikely to compete for trophic niche space. The tropical and temperate species we studied, which are commonly found in shallow‐water coastal environments, exhibited moderately broad niche breadths and local‐scale dietary plasticity, indicating trophic generalism. We posit that because these species are generalists, they can co‐exist under current climate change, facilitating the existence of novel community structures.  相似文献   

15.
Freshwater ecosystems are increasingly impacted by alien invasive species which have the potential to alter various ecological interactions like predator-prey and host-parasite relationships. Here, we simultaneously examined predator-prey interactions and parasitization patterns of the highly invasive round goby (Neogobius melanostomus) in the rivers Rhine and Main in Germany. A total of 350 N. melanostomus were sampled between June and October 2011. Gut content analysis revealed a broad prey spectrum, partly reflecting temporal and local differences in prey availability. For the major food type (amphipods), species compositions were determined. Amphipod fauna consisted entirely of non-native species and was dominated by Dikerogammarus villosus in the Main and Echinogammarus trichiatus in the Rhine. However, the availability of amphipod species in the field did not reflect their relative abundance in gut contents of N. melanostomus. Only two metazoan parasites, the nematode Raphidascaris acus and the acanthocephalan Pomphorhynchus sp., were isolated from N. melanostomus in all months, whereas unionid glochidia were only detected in June and October in fish from the Main. To analyse infection pathways, we examined 17,356 amphipods and found Pomphorhynchus sp. larvae only in D. villosus in the river Rhine at a prevalence of 0.15%. Dikerogammarus villosus represented the most important amphipod prey for N. melanostomus in both rivers but parasite intensities differed between rivers, suggesting that final hosts (large predatory fishes) may influence host-parasite dynamics of N. melanostomus in its introduced range.  相似文献   

16.
  1. Generalistic interactions between predator and prey may vary with ecosystem type, predator traits, and prey traits, but the interplay of these factors has not been assessed in ground food webs.
  2. We investigated trophic interactions of ground-dwelling spiders across eight forests in European Russia associated with body size, hunting strategy, microhabitat specialization, potential prey type, potential prey population density, and forest type (coniferous vs. broadleaved). We analyzed 128 individual spiders, including juveniles, all identified to the family level with two complementary methods: molecular gut content analysis, and stable isotope analysis of carbon and nitrogen.
  3. The results suggest that feeding frequency of spiders is affected by predator body size and by selection of certain prey type. Stable isotope analysis showed similar trophic niches among spider families, varying moderately with forest type. Larger spiders had higher Δ13C values than smaller ones, but similar Δ15N values, suggesting that different size classes of spiders belong to different food chains. Results based on stable isotope and molecular gut content analyses were weakly linked, indicating them targeting different trophic niche dimensions.
  4. At least for the group-level interactions, family identity and hunting strategy of predator has little predictive power while predator body size and prey traits affected trophic niche dimensions calling for future studies in this direction. Large spiders feed more and rely on different basal resources than small spiders, suggesting that including small species and juveniles provides a more comprehensive picture of food web organization.
  相似文献   

17.
The annual routines and seasonal ecology of herbivorous zooplankton species are relatively well known due to their tight coupling with their pulsed food source, the primary production. For higher trophic levels of plankton, these seasonal interactions are less well understood. Here, we study the mid-winter feeding of chaetognaths in high-Arctic fjord ecosystems. Chaetognaths are planktivorous predators which comprise high biomass in high-latitude seas. We investigated the common species Parasagitta elegans around the Svalbard archipelago (78–81°N) during the winters of 2012 and 2013. Our samples consisted of individuals (body lengths 9–55 mm) from three fjords, which were examined for gut contents (n = 903), stable isotopes, fatty acid composition, and maturity status (n = 352). About a quarter of the individuals contained gut contents, mainly lipid droplets and chitinous debris, whilst only 4 % contained identifiable prey, chiefly the copepods Calanus spp. and Metridia longa. The δ15N content of P. elegans, and its average trophic level of 2.9, confirmed its carnivorous position and its fatty acid profile [in particular its high levels of 20:1(n-9) and 22:1(n-11)] confirmed carnivory on Calanus. Observations of undeveloped gonads in many of the larger P. elegans, and the absence of small individuals <10 mm, suggested that reproduction had not started this early in the year. Its average feeding rate across fjords and years was 0.12 prey ind.?1 day?1, which is low compared to estimates of spring and summer feeding in high-latitude environments. Our findings suggest reduced feeding activity during winter and that predation by P. elegans had little impact on the mortality of copepods.  相似文献   

18.
Life history strategies and potential marine niche use of Arctic charr Salvelinus alpinus (n = 237, 84–652 mm, total body length, LT) were determined during the ice-free season (2012) at three different watercourses in south-western Greenland. All Arctic charr were collected from freshwater habitats. Based on stable isotopes of δ34S, the Arctic charr were categorized as either marine- or freshwater-dependent feeders. The use of time-integrated trophic tracers (stable isotopes of δ13C, δ15N, δ34S) suggested that several trophic groups of Arctic charr operate alongside within each fjord system. The groups suggested were one group that specialized in the marine habitat, in addition to two freshwater resident morphs (small-sized resident and/or large-growing cannibalistic individuals). Stomach contents consisted entirely of freshwater and terrestrial prey (i.e., insects), indicating that marine-dependent feeders also fed in freshwater habitats after return from their marine migration. Growth and maturity patterns further supported variable life history strategies within each watercourse. The life history strategy patterns and marine trophic niche use were consistent across the watercourses along several hundred kilometres of coastline. This study represents the first ecological baseline for partially anadromous populations of Greenland Arctic charr.  相似文献   

19.
Stable isotope (δ13C and δ15N) and gut content analyses were used to investigate size‐related feeding habits of four reef fishes (the beaugregory Stegastes leucostictus, the french grunt Haemulon flavolineatum, the schoolmaster snapper Lutjanus apodus and the yellowtail snapper Ocyurus chrysurus) inhabiting an offshore (non‐estuarine) mangrove islet off Belize, Central America. Comparisons of isotopic niche space and Schoener diet similarity index suggested a low to moderate degree of niche overlap between fish size groups. The δ13C gradient between mangrove and seagrass prey as well as results of Bayesian mixing models revealed that sampled fishes relied mostly on seagrass prey items. Only small and large juveniles of the carnivorous species L. apodus derived a part of their diet from mangroves by targeting mangrove‐associated Grapsidae crabs and fish prey, respectively. Isotopic niche shifts were particularly obvious for carnivorous fishes that ingested larger prey items (Xanthidae crabs and fishes) during their ontogeny. The utilization of mangrove food resources is less than expected and depends on the ecology and life history of the fish species considered. This research highlights that mangrove‐derived carbon contributed relatively little to the diets of four fish taxa from an offshore mangrove islet.  相似文献   

20.
We investigated the trophic position of the larval filter-feeding caddisfly species—Stenopsyche marmorata Navas in the Echi River (Japan) using δ13C and δ15N measurements by instar growth stage. We also analyzed δ13C and δ15N of food sources (periphyton and suspended and benthic POM) along the course of the river. The larvae showed some degree of spatial variation in δ13C and δ15N values with a downstream increase in δ13C and δ15N values. Our results demonstrate that the trophic structure of S. marmorata of different larval stages were spatially varying, depending on food sources. Small-sized instars displayed a higher trophic position than larger instars, confirming that their non-selective feeding behavior leads to consumption of items with high δ15N values according to the spatial distribution of food sources in the riverine system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号