首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is a serious pest of pome fruit crops. A natural enemy of codling moth, the larval ectoparasitoid Mastrus ridibundus (Gravenhorst) (Hymenoptera: Ichneumonidae) has been imported into South America from the USA but little is known about the biology and ecology of the wasp, knowledge that is needed to design an efficient strategy of release and establishment. Experiments were carried out to assess important traits of the biology of the parasitoid in relation to its possible use as a biocontrol agent for codling moth. When M. ridibundus females were offered larvae ranging in weight from 37 to 78 mg, they oviposited more eggs on heavier hosts. In another study, the adult wasps were offered honey, diluted honey (10%) or pollen in paired choice tests and both males and females preferred honey over the other two foods. Females preferred 10% honey over pollen, while the males showed the opposite preference. Honey‐fed females lived longer than starved females. Adults died rapidly at 35°C, while they lived 20 days at 25°C and 12–17 days at 15°C. Female wasps had on average 25 ± 14 and 18 ± 11 progeny at 15 and 25°C, respectively, but they did not had progeny at 35°C. The development time (egg to adult emergence) was on average 44 ± 7 and 24 ± 2 days at 15 and 25°C respectively. Immature insects did not reach the adult stage at 35°C.  相似文献   

2.
Steinernema feltiae is used to control overwintering larvae of the codling moth Cydia pomonella L. Application is in autumn when efficacy can be limited by low temperature. The objective of this study was to screen for low temperature activity among wild type populations of S. feltiae, hybridise most active strains and further improve low temperature activity by subjection of a hybrid strain to selective breeding. Significant variation was recorded among 22 S. feltiae strains. The temperature at which 50 % (AT50) and 10 % (AT10) of the dauer juveniles (DJs) were active ranged between 2.9 to 5.8 °C and 0.95 to 3.5 °C, respectively. The mean AT50 of 22 S. feltiae strains was 3.83 °C. The five most active strains were crossed. The hybrid strain HYB01 was more active at low temperature than parental and other hybrid strains with an AT50 of 0.52 °C and an AT10 of 0.09 °C. The tolerance was lost after few reproductive cycles in the insect Galleria mellonella, but was recovered after seven selection cycles with exposure to lowering temperatures. The heritability for the low temperature activity was calculated at h 2 = 0.45. Negative trade-off effects on virulence against C. pomonella and reproduction on the same insect were not reported. The most virulent strain was a commercial strain with an LD50 of 30.2 at 8 °C and 37.2 DJs per cocooned instar at 15 °C, followed by the selected hybrid with 48.1 and 47.4 DJs, respectively. Offspring production reached 15.000 DJs per instar at 8 °C and was only half at 15 °C. The results well document the potential of a breeding programme for enhancement of the activity of S. feltiae at lower temperature with the objective to improve the control potential of overwintering codling moth C. pomonella.  相似文献   

3.
Laboratory studies demonstrated that neonate larvae of the pea moth, Cydia nigricana, are susceptible to infection with a granulosis virus (CpGV) isolated from the codling moth, Cydia pomonella. Comparative LC50 values for C. nigricana and C. pomonella are 1.90 × 105 and 1.54 × 104 capsules/ml of diet, respectively. The virus extracted from CpGV-infected pea moth larvae is serologically related, and probably identical, to CpGV.  相似文献   

4.
Climate change effects on walnut pests in California   总被引:1,自引:0,他引:1  
Increasing temperatures are likely to impact ectothermic pests of fruits and nuts. This paper aims to assess changes to pest pressure in California's US$0.7 billion walnut industry due to recent historic and projected future temperature changes. For two past (1950 and 2000) and 18 future climate scenarios (2041–2060 and 2080–2099; each for three General Circulation Models and three greenhouse gas emissions scenarios), 100 years of hourly temperature were generated for 205 locations. Degree‐day models were used to project mean generation numbers for codling moth (Cydia pomonella L.), navel orangeworm (Amyelois transitella Walker), two‐spotted spider mite (Tetranychus urticae Koch), and European red mite (Panonychus ulmi Koch). In the Central Valley, the number of codling moth generations predicted for degree days accumulated between April 1 and October 1 rose from 2–4 in 1950 to 3–5 among all future scenarios. Generation numbers increased from 10–18 to 14–24 for two‐spotted spider mite, from 9–14 to 14–20 for European red mite, and from 2–4 to up to 5 for navel orangeworm. Overall pest pressure can thus be expected to increase substantially. Our study did not include the possibility of higher winter survival rates, leading to higher initial pest counts in spring, or of extended pest development times in the summer, factors that are likely to exacerbate future pest pressure. On the other hand, initiation of diapause may prevent an extension of the season length for arthropods, and higher incidence of heat death in summer may constrain pest population sizes. More information on the impact of climate change on complex agroecological food webs and on the response of pests to high temperatures is needed for improving the reliability of projections.  相似文献   

5.
Population dynamics of parasitoid–host interaction is primary important knowledge to develop an efficient biological control strategy of insect pests. We analyzed the seasonal dynamic of the parasitoid community of the codling moth in two sites in South-Eastern France, which differed by the number of codling moth annual generations. Parasitism was estimated by sampling both young larvae collected within apple fruits and mature larvae in band traps wrapped around the trunk of the apple trees. Parasitism rates differed between sites and between young and mature larvae. Parasitism rate were higher in young larvae (29% in average) than in the mature ones (21% in average) and globally increased along the season among cohorts of mature codling moth larvae (from 4% to 34%). The three most abundant species in the parasitoid community – Ascogaster quadridentata, Pristomerus vulnerator and Perilampus tristis – were observed at both sites, in each codling moth cohort and in both young and mature larvae. Among all the parasitoids, the proportion of Perilampus – an hyper-parasitoid attacking both Ascogaster and Pristomerus primary parasitoids – increased among the codling moth cohorts (from 9% to 53%) whereas the proportion of Ascogaster decreased (from 82% to 35%). This shed light on the importance to characterize the dynamic of the whole trophic network (including hyperparasitism) to design biological control strategies.  相似文献   

6.
The oriental fruit moth, Grapholita molesta, is becoming a large threat to Korean pear production. Timely management of the egg and early larval stages from the spring emergence is critical to reduce the G. molesta population during the pear growing season. A model was developed to precisely predict the spring occurrence of G. molesta adults as a function of accumulated degree-days. The model was validated with male moth caught in sex pheromone-baited traps placed in pear orchards at two major pear production regions (Icheon and Naju) of Korea in 2010. We applied nine distribution models to describe the cumulative proportions of G. molesta males caught relative to accumulated degree-days. The observed phenology of the G. molesta spring population was well described by the nine models. The predicted dates for the cumulative 50% male moth catches were within a 5 day period. Based on statistical information criteria (Akaike's and Bayes–Schwartz information criteria), we recommend the sigmoid function referred by Brown and Mayer, because of its ease of use and meaningfulness; the parameter “b” denotes the degree-day accumulation at 50% moth emergence. The G. molesta spring emergence model could be applied to determine optimal chemical treatment timing for controlling G. molesta in fruit tree orchards and further help to develop a full-cycle phenology model of G. molesta.  相似文献   

7.
Ocean warming and acidification are general consequences of rising atmospheric CO2 concentrations. In addition to future predictions, highly productive systems such as the Humboldt Current System are characterized by important variations in both temperature and pCO2 level, but how these physical–chemical ocean changes might influence the transmission and survival of parasites has not been assessed. This study experimentally evaluated the effects of temperature (14, 18 and 25 °C) and the combined effects of temperature (∼15 and 20 °C) and pCO2 level (∼500 and 1400 microatmospheres (µatm) on the emergence and survival of two species of marine trematodes—Echinostomatidae gen. sp. and Philophthalmidae gen. sp.—both of which infect the intertidal snail Echinolittorina peruviana. Snails were collected from intertidal rocky pools in a year-round upwelling area of the northern Humboldt Current System (23°S). Two experiments assessed parasite emergence and survival by simulating emersion-immersion tidal cycles. To assess parasite survival, 2 h old cercariae (on average) were taken from a pool of infected snails incubated at 20–25 °C, and their mortality was recorded every 6 h until all the cercariae were dead. For both species, a trade-off between high emergence and low survival of cercariae was observed in the high temperature treatment. Species-specific responses to the combination of temperature and pCO2 levels were also observed: the emergence of Echinostomatidae cercariae was highest at 20 °C regardless of the pCO2 levels. By contrast, the emergence of Philophthalmidae cercariae was highest at elevated pCO2 (15 and 20 °C), suggesting that CO2 may react synergistically with temperature, increasing transmission success of this parasite in coastal ecosystems of the Humboldt Current System where water temperature and pH are expected to decrease. In conclusion, our results suggest that integrating temperature-pCO2 interactions in parasite studies is essential for understanding the consequence of climate change in future marine ecosystem health.  相似文献   

8.
The potential of using an entomopathogenic nematode, Heterorhabditis zealandica Poinar, together with different test mulches (pine chips, wheat straw, pine wood shavings, blackwood and apple wood chips) to control diapausing codling moth, Cydia pomonella (L.) larvae was evaluated. Mesh cages were identified as a suitable larval-containment method. High levels of codling moth mortality were obtained when using pine wood shavings as mulch (88%) compared to pine chips, wheat straw, blackwood and apple wood chips (41–88%). Humidity (>95% RH) has to be maintained for at least 3 days to ensure nematode survival. It was also proven that nematodes had the ability to move out of infected soil into moist mulch, to infect the codling moth larvae residing at heights of up to 10 cm. Field experiments showed the importance of climatic conditions on nematode performance. Low temperatures (<15°C) recorded during the first trial resulted in low levels of control (48%), as opposed to the 67% mortality recorded during the second trial (temperatures ranged between 20 and 25°C). Low levels of persistence (<10%) were recorded in the mulches post-application. The study conclusively illustrated some of the baseline requirements fundamental to the success of entomopathogenic nematodes together with mulches for the control of codling moth.  相似文献   

9.
Four-year monitoring of phenology of the blowfly Caliphora vicina under quasi-natural conditions in the environs of St. Petersburg demonstrated development of two complete generations and overwintering of the third generation. The duration of preimaginal development (from egg laying to adult emergence) of the 1st and 2nd generations varied from 19 to 32 days; the required sum of effective temperatures (SET) was 326 ± 31 degree-days with a threshold of 5°С. Reproductive maturation of females (the period of time from adult emergence to laying of the first eggs) lasted from 15 to 31 days (SET was 262 ± 39 degree-days with a threshold of 5°С). The duration of development of one complete generation (from egg stage to the beginning of oviposition) during the period of observation varied from 34 to 57 days (SET was about 600 degree-days with a threshold of 5°С). The first diapausing larvae hatched from the eggs laid in the middle of August. In September, at shorter day lengths and at a temperature of 10–11°С, 80–100% of the larvae entered diapause. A small fraction of the larvae of the 1st and 2nd generation and most of the larvae of the 3rd generation overwintered. Successful overwintering of adults in the environs of St. Petersburg is hardly possible.  相似文献   

10.
Plant architecture of apple trees in commercial orchards was rapidly changed from traditional tall trees to dwarf trees to optimize yield and fruit quality. Additionally, hail nets are widely used to prevent yield loss by hail. These changes are expected to considerably influence the orchard microclimate and thus the developmental rates of pest insects in apple. However, these relationships have not yet been fully elucidated. The present study was conducted over the seasonal cycle to investigate the influence of plant architecture and hail nets on the habitat temperatures of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in apple, Malus domestica Borkh. (Rosaceae). Within the canopies, leaf area index (LAI) and global site factor (GSF) were quantified using hemispherical photography. Temperature was analysed for the main habitats of the different codling moth stages, i.e., air within the canopy, bark of tree stems, and apple fruit. In dwarf trees, LAI was lower, leading to a higher GSF than in tall trees. Hail nets did not influence LAI and GSF. Results for dwarf trees compare as follows with those for tall trees: Average air temperatures within the canopy were 0.7 °C higher during daytime, whereas 0.4 °C lower at night. Mean surface temperatures of bark were 0.9 °C higher on sunny and 0.4 °C on overcast days. Mean surface temperatures of apple fruits were 1.8–2.7 °C higher on sunny days, but 0.6 °C cooler on overcast days. The effect of hail nets was confined to a reduction of the air temperature within the canopy by approximately 0.2–0.8 °C. Bark and apple surface temperatures were not significantly affected. Based on the temperature differences in the habitats considered, the calculated development of the codling moth in dwarf trees was on average 3 days faster than in tall trees. The calculations imply a negligible effect of hail nets on codling moth development.  相似文献   

11.
We studied the development of Geocoris varius (Uhler) and Geocoris proteus Distant reared on Ephestia kuehniella Zeller eggs at 20, 24, 26, 30, 33, or 36?°C. The lower developmental thresholds (T 0) and the thermal constants (K) of eggs and nymphs of G. varius were 13.3?°C, 151.1 degree-days and 13.4?°C, 433.0 degree-days, respectively; those of G. proteus were 16.1?°C, 98.3 degree-days and 16.9?°C, 226.9 degree-days, respectively. The hatch rate of G. varius eggs was significantly lower at 33?°C than at ??30?°C, and no eggs hatched at 36?°C. That of G. proteus was lowest at 20?°C and did not decline significantly at 36?°C. The survival rate throughout the nymphal period increased with temperature up to 30?°C in G. varius, and it was lowest at 20?°C in G. proteus. Thus, the optimal rearing temperatures for immature stages appear to be about 24?C30?°C for G. varius and 26?C33?°C for G. proteus. It might be possible to improve the efficiency of their mass production by controlling the rearing temperature in the above ranges. This would also make the developmental stages of nymphs more uniform and so prevent cannibalism in mass rearing.  相似文献   

12.
13.
The non-insecticidal control strategies currently being implemented in South African orchards for the control of codling moth, Cydia pomonella (L.) may be hampered by wooden fruit bins being infested with diapausing codling moth larvae, acting as a potential source of re-infestation. Key factors contributing to the success or failure of an entomopathogenic nematode application were investigated using the SF 41 isolate of Heterorhabditis zealandica in laboratory bioassays with wooden minibins. Under operational conditions, an application rate of 100 IJs/mL (LD90=102 IJs/mL) effectively controlled codling moth larvae in these bins, and for further laboratory bioassays, the LD50 value of 18 IJs/mL (?25 IJs/mL) was identified as the discriminating dosage. Maximum mortality was attained when bins were pre-wet for at least 1 min (>90% RH) and maintained at maximum humidity (>95% RH) post-treatment for at least 3 days (LT90=73 h), to ensure nematode survival and subsequent satisfactory infection of diapausing codling moth larvae. Tarping bins achieved the desired high level of humidity required. Furthermore, adjuvants (specifically Reverseal 10?) also improved an application. The study conclusively illustrated that if all the above-mentioned conditions are met, H. zealandica has the potential to successfully disinfest wooden fruit bins of codling moth.  相似文献   

14.
The aim of this study was to select a phenological model that is able to calculate the beginning of egg laying of Great Tit (Parus major) for both current and future climate conditions. Four models (M1–M4) were optimised on long-term phenological observations from the Ecological Research Centre Schlüchtern (Hessen/Germany). Model M1 was a common thermal time model that accumulates growing degree days (GDD) on an optimised starting date t 1. Since egg laying of Great Tit is influenced not only by air temperature but also by photoperiod, model M1 was extended by a daylength term to give M2. The other two models, M3 and M4, correspond to M1 and M2, but t 1 was intentionally set to 1 January, in order to consider already rising temperatures at the beginning of the year. A comparison of the four models led to following results: model M1 had a relatively high root mean square error at verification (RMSEver) of more than 4 days and can be used only to calculate the start of egg laying for current climate conditions because of the relatively late starting date for GDD calculation. The model failed completely if the starting date was set to 1 January (M3). Consideration of a daylength term in models M2 and M4 improved the performance of both models strongly (RMSEver of only 3 days or less), increased the credibility of parameter estimation, and was a precondition to calculate reliable projections in the timing of egg laying in birds for the future. These results confirm that the start of egg laying of Great Tit is influenced not only by air temperature, but also by photoperiod. Although models M2 and M4 both provide comparably good results for current climate conditions, we recommend model M4–with a starting date of temperature accumulation on 1 January–for calculating possible future shifts in the commencement of egg laying. Our regional projections in the start of egg laying, based on five regional climate models (RCMs: REMO-UBA, ECHAM5-CLM, HadCM3-CLM, WETTREG-0, WETTREG-1, GHG emission scenario A1B), indicate that in the near future (2011–2040) no significant change will take place. However, in the mid- (2041–2070) and long-term (2071–2100) range the beginning of egg laying could be advanced significantly by up to 11 days on average of all five RCMs. This result corresponds to the already observed shift in the timing of egg laying by about 1 week, due mainly to an abrupt increase in air temperature at the end of the 1980s by 1.2 K between April and May. The use of five regional climate scenarios additionally allowed to estimate uncertainties among the RCMs.  相似文献   

15.
The pathogenicity of Nosema carpocapsae for codling moth was studied using dose-infectivity experiments. The IC50 (median infective concentration) was similar for the five larval instars (range 4.0 × 103 to 6.7 × 104 spores/ml). Spore loads in moths ranged from 6.0 × 106 to 7.1 × 107 spores per moth and varied with dose and with larval age at infection. The infection does not cause mortality but does reduce the fecundity and fertility of infected moths. Nosema carpocapsae is transmitted transovarially as well as horizontally. Infected eggs were not produced by healthy females mated with infected males, although such pairs generally produced fewer eggs than healthy pairs.  相似文献   

16.
The biocontrol potential of South African isolates of Heterorhabditis zealandica, Steinernema citrae, S. khoisanae, S. yirgalemense, and Steinernema sp., was evaluated against codling moth, Cydia pomonella. Codling moth was susceptible to all six nematode isolates at a concentration of 50 infective juveniles/insect (78–100% mortality). Low temperatures (10 h at 17°C; 14 h at 12°C) negatively affected larvicidal activity (≤3%) for all isolates. All tested isolates were most effective at higher levels of water activity (a w=1). The average a w50-values for all isolates tested was 0.94 (0.93–0.95), except S. khoisanae 0.97 (0.97–0.98). Regarding host-seeking ability, no positive attraction to host cues could be detected amongst isolates, except for H. zealandica. Three of the isolates, H. zealandica, S. khoisanae, and the undescribed Steinernema sp., were selected for field-testing and proven to be effective (mortality >50%). Insect containment methods used during field experimentation was shown to influence larvacidal activity, as different levels of mortality were obtained using various containment methods (wooden planks vs. pear tree logs vs. mesh cages). Pear tree logs were impractical. Predictive equations were subsequently developed, enabling future trials to be conducted using either planks or cages, enabling the prediction of the expected level of control on tree logs. All tested isolates therefore showed a certain degree of biological control potential, however, none of the experiments showed clear efficacy-differences amongst isolates. The study highlighted the importance of environmental factors to ensure the successful application of these nematodes for the control of diapausing codling moth larvae in temperate regions.  相似文献   

17.
Temperature-dependent development rate, percent diapause induction (hibernation at low temperature and aestivation at high temperature), and survival of diapausing larvae of Chilo partellus (Swinhoe, 1885) were examined on 13 constant temperatures ranging from 8 to 40 °C. Development of hibernating and aestivating larvae occurred from 10 to 25 °C and 27–38 °C, respectively. However, no development occurred at 8 °C and 40 °C. To determine actual thermal conditions that affect development and trigger both kind of diapause (hibernation and aestivation), various thermal parameters were estimated by fitting the development rate data to two linear (Ordinary equation and Ikemoto & Takai) models and thirteen non-linear models. The lower thermal thresholds (Tmin) for development of diapausing larvae of C. partellus were calculated as 9.60 °C and 10.29 °C using the ordinary linear model and Ikemoto & Takai model, respectively. Similarly, the thermal constants (K) estimated using the ordinary linear model was 333.33 degree-days and that estimated with Ikemoto & Takai model was 338.92 degree-days. Among the non-linear models, Lactin-2 followed by Lactin-1 were found to be the best as these models estimated the critical temperatures (Tmin, Tmax and Topt) similar to those of observed values. Conclusively, the Ikemoto & Takai linear model and Lactin-2 followed by Lactin-1 non-linear models are useful and efficient for describing temperature-dependent development and estimating the temperature thresholds of diapausing larvae of C. partellus. Our findings provided fundamental information for estimation of thermal requirement and temperature based development models for diapausing larvae of C. partellus. This information will be highly useful for predicting the occurrence, seasonal emergence, number of generations and population dynamics of C. partellus.  相似文献   

18.
  1. Apple growers have pursued the use of exclusion netting to reduce pesticide inputs and maintain control of codling moth.
  2. It is uncertain if these nets provide a physical or behavioural behaviour, and if they prevent codling moth establishment.
  3. To address this, we conducted field trials testing the ability of commercial netting to exclude codling moth using small (3 trees) and large (48 trees) cages. Experiments were conducted to evaluate both the permeability by releasing marked sterile moths either inside or outside the small cages, and the establishment of wild codling moth in the large cages.
  4. Results from the small cage study showed that netting reduced codling moth movement out of the netted plots, but virtually prevented codling moth dispersal into the plots. Codling moth capture inside the large cage plots was significantly less than in uncaged plots, but no differences were found in codling moth damage at harvest.
  5. These results indicate that the netting is physically permeable to codling moth adults; however, it acts as a behavioural barrier to moth immigration. These outcomes agree with existing literature that net enclosures can provide a non-insecticidal tool to improve codling moth management, although it may not be a stand-alone technique.
  相似文献   

19.
The development and reproductive potential of an indigenous parasitoid, Aphelinus varipes (Förster), was studied at 15, 17, 20, 25, and 30 °C. Developmental durations decreased with increasing temperatures. The emergence rate was higher than 90 % at 15, 17, and 20 °C. Offspring sex ratios were 0.69, 0.54, and 0.70 at 17, 20, and 25 °C, respectively, but were 0.14 at 15 °C and 0.38 at 30 °C. Developmental zeros of females and males were calculated as 9.9 and 9.6 °C, respectively. The effective accumulative temperature (K) was 204.1 degree-days in both sexes. Fecundity peaked in early age after emergence, then gradually decreased in a fluctuating manner at 20 and 25 °C. Host feeding continued constantly during the life of female adults at two temperatures. Single female parasitoids produced 218.5 and 203.1 mummies at 20 and 25 °C, respectively, during their lifespans. Aphids killed by parasitoid host feeding numbered 79.1 at 20 °C and 63.8 at 25 °C. Longevities were 27.0 days at 20 °C and 20.6 days at 25 °C. Moreover, intrinsic rates of natural increase (r m) were estimated as 0.151 at 20 °C and 0.227 at 25 °C. We discuss the potential of A. varipes as biological control agents by comparing them with Aphidius colemani Viereck, which has been introduced to horticultural crops in greenhouses in Japan.  相似文献   

20.
The effects of temperature on the development (egg–adult emergence) of Gonatocerus morgani Triapitsyn, a newly-described parasitoid of Homalodisca vitripennis (Germar), were determined at 14.8, 18.7, 23.5, 26.9, 28.7, 30.4, 32.8, and 33.8 °C in the laboratory. Survival rate (percent adult emergence from parasitized host eggs) varied significantly among the experimental temperatures, with the highest (59%) and lowest (0%) occurring at 30.4 and 33.8 °C, respectively. The survival rates (%) were fitted with a polynomial model to describe a temperature-dependent pattern. Developmental rates (1/d) across seven temperatures were fitted with the nonlinear Briere model, which estimated the lower threshold to be 8.06 °C, the optimal temperature to be 29.22 °C, and the upper threshold to be 33.49 °C. A linear model fitted to developmental rates at 14.8–28.7 °C indicated that 189.75 degree-days above the lower threshold of 9.71 °C were required to complete development. A simulation model of G. morgani adult emergence was constructed to predict daily counts over the entire range of constant temperatures by incorporating the survival rate model, the Briere model, and the Weibull model. In outdoor validation, a degree-day model for predicting adult emergence showed ?2 d differences between prediction and observation. Based on the observed temperature requirement, the insect could complete thirteen to sixteen generations per year in southern California, depending on weather and location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号