首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 [VP3]; 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. Cleavage of VP3 does not alter viral binding to cell monolayers. In previous electron microscopic studies of infected cell cultures, it has been demonstrated that rotavirus particles enter cells by both endocytosis and direct cell membrane penetration. To determine whether trypsin treatment affected rotavirus internalization, we studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time of 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Endocytosis inhibitors (sodium azide, dinitrophenol) and lysosomotropic agents (ammonium chloride, chloroquine) had a limited effect on the entry of infectious virus into cells. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 medicated 51Cr, [14C]choline, and [3H]inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.  相似文献   

2.
DNA damage and apoptosis lead to the release of free nucleosomes—the basic structural repeating units of chromatin—into the blood circulation system. We recently reported that free nucleosomes that enter the cytoplasm of mammalian cells trigger immune responses by activating cGMP-AMP synthase (cGAS). In the present study, we designed experiments to reveal the mechanism of nucleosome uptake by human cells. We showed that nucleosomes are first absorbed on the cell membrane through nonspecific electrostatic interactions between positively charged histone N-terminal tails and ligands on the cell surface, followed by internalization via clathrin- or caveolae-dependent endocytosis. After cellular internalization, endosomal escape occurs rapidly, and nucleosomes are released into the cytosol, maintaining structural integrity for an extended period. The efficient endocytosis of extracellular nucleosomes suggests that circulating nucleosomes may lead to cellular disorders as well as immunostimulation, and thus, the biological effects exerted by endocytic nucleosomes should be addressed in the future.  相似文献   

3.
Bordetella pertussis, the pathogen responsible for whooping cough, produces a calmodulin-sensitive adenylate cyclase. Several investigators have shown that the partially purified adenylate cyclase is capable of entering animal cells and elevating intracellular cAMP levels (Confer and Eaton: Science 217:948-950, 1982; Shattuck and Storm: Biochemistry 24:6323-6328, 1985). However, the mechanism for entry of the catalytic subunit of this adenylate cyclase into animal cells is unknown. It has been reported that the B. pertussis adenylate cyclase extracted from bacterial cells with urea does not enter animal cells by receptor-mediated endocytosis. There is, in addition to the cell associated form of the B. pertussis adenylate cyclase, a cell-invasive form of the enzyme secreted into the bacterial culture media. The properties of the cell-associated and secreted enzymes are significantly different (Masure and Storm: Biochemistry 28:438-442, 1989). In this study, we report evidence that the secreted form of the B. pertussis adenylate cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis.  相似文献   

4.
Vaccinia virus (VACV), the model poxvirus, produces two types of infectious particles: mature virions (MVs) and extracellular virions (EVs). EV particles possess two membranes and therefore require an unusual cellular entry mechanism. By a combination of fluorescence and electron microscopy as well as flow cytometry, we investigated the cellular processes that EVs required to infect HeLa cells. We found that EV particles were endocytosed, and that internalization and infection depended on actin rearrangements, activity of Na(+)/H(+) exchangers, and signalling events typical for the macropinocytic mechanism of endocytosis. To promote their internalization, EVs were capable of actively triggering macropinocytosis. EV infection also required vacuolar acidification, and acid exposure in endocytic vacuoles was needed to disrupt the outer EV membrane. Once exposed, the underlying MV-like particle presumably fused its single membrane with the limiting vacuolar membrane. Release of the viral core into the host cell cytosol allowed for productive infection.  相似文献   

5.
Influenza virus has been described to enter host cells via clathrin-mediated endocytosis. However, it has also been suggested that other endocytic routes may provide additional entry pathways. Here we show that influenza virus may enter and infect HeLa cells that are unable to take up ligands by clathrin-mediated endocytosis. By overexpressing a dominant-negative form of the Eps15 protein to inhibit clathrin-mediated endocytosis, we demonstrate that while transferrin uptake and Semliki Forest virus infection were prevented, influenza virus could enter and infect cells expressing Eps15Delta95/295. This finding is supported by the successful infection of cells with influenza virus in the presence of chemical treatments that block endocytosis, namely, chlorpromazine and potassium depletion. We show also that influenza virus may infect cells incapable of uptake by caveolae. Treatment with the inhibitors nystatin, methyl-beta-cyclodextrin, and genistein, as well as transfection of cells with dominant-negative caveolin-1, had no effect on influenza virus infection. By combining inhibitory methods to block both clathrin-mediated endocytosis and uptake by caveolae in the same cell, we demonstrate that influenza virus may infect cells by an additional non-clathrin-dependent, non-caveola-dependent endocytic pathway. We believe this to be the first conclusive analysis of virus entry via such a non-clathrin-dependent pathway, in addition to the traditional clathrin-dependent route.  相似文献   

6.
BackgroundThis work is focused on mechanisms of uptake in cancer cells of rationally designed, covalently assembled nanoparticles, made of superparamagnetic iron oxide nanoparticles (SPIONs), fluorophores (doxorubicin or Nile Blue), polyethylene glycol (PEG) and folic acid (FA), referred hereinafter as SFP-FA.MethodsSFP-FA were characterized by DLS, zetametry and fluorescence spectroscopy. The SFP-FA uptake in cancer cells was monitored using fluorescence-based methods like fluorescence-assisted cell sorting, CLSM with single-photon and two-photon excitation. The SFP-FA endocytosis was also analyzed with electron microscopy approaches: TEM, HAADF-STEM and EELS.ResultsThe SFP-FA have zeta potential below − 6 mW and stable hydrodynamic diameter close to 100 nm in aqueous suspensions of pH range from 5 to 8. They contain ca. 109 PEG-FA, 480 PEG-OCH3 and 22–27 fluorophore molecules per SPION. The fluorophores protected under the PEG shell allows a reliable detection of intracellular NPs. SFP-FA readily enter into all the cancer cell lines studied and accumulate in lysosomes, mostly via clathrin-dependent endocytosis, whatever the FR status on the cells.ConclusionsThe present study highlights the advantages of rational design of nanosystems as well as the possible involvement of direct molecular interactions of PEG and FA with cellular membranes, not limited to FA-FR recognition, in the mechanisms of their endocytosis.General significanceComposition, magnetic and optical properties of the SFP-FA as well their ability to enter cancer cells are promising for their applications in cancer theranosis. Combination of complementary analytical approaches is relevant to understand the nanoparticles behavior in suspension and in contact with cells.  相似文献   

7.
Rapid plasma membrane resealing is essential for cellular survival. Earlier studies showed that plasma membrane repair requires Ca2+-dependent exocytosis of lysosomes and a rapid form of endocytosis that removes membrane lesions. However, the functional relationship between lysosomal exocytosis and the rapid endocytosis that follows membrane injury is unknown. In this study, we show that the lysosomal enzyme acid sphingomyelinase (ASM) is released extracellularly when cells are wounded in the presence of Ca2+. ASM-deficient cells, including human cells from Niemann-Pick type A (NPA) patients, undergo lysosomal exocytosis after wounding but are defective in injury-dependent endocytosis and plasma membrane repair. Exogenously added recombinant human ASM restores endocytosis and resealing in ASM-depleted cells, suggesting that conversion of plasma membrane sphingomyelin to ceramide by this lysosomal enzyme promotes lesion internalization. These findings reveal a molecular mechanism for restoration of plasma membrane integrity through exocytosis of lysosomes and identify defective plasma membrane repair as a possible component of the severe pathology observed in NPA patients.  相似文献   

8.
The early steps of the intracellular trafficking of human papillomavirus type 16 (HPV-16), -31, and -58 pseudovirions were studied by investigating the effects of drugs acting at defined points of endocytosis pathways on virus-like particle-mediated pseudoinfection by overexpression of a dominant-negative form of the Eps15 protein to inhibit clathrin-mediated endocytosis and by electron microscopy. The results obtained suggested the involvement of clathrin-mediated endocytosis in HPV-16 and HPV-58 entry and caveola-mediated endocytosis in HPV-31 entry.  相似文献   

9.
Structure and energy calculations of pristine and COOH-modified model single wall carbon nanotubes (SWCNTs) of different length were performed at B3LYP/6-31G* level of theory. From 1 to 9 COOH groups were added at the end of the nanotube. The differences in structure and energetics of partially and fully functionalized SWCNTs at one end of the nanotube are observed. Up to nine COOH groups could be added at one end of (9,0) zigzag SWCNT in case of full functionalization. However, for (5,5) armchair SWCNT, the full functionalization was impossible due to steric crowding and rim deformation. The dependence of substituent attachment energy on the number of substituents at the carbon nanotube rim was observed.  相似文献   

10.
Clathrin assembly at the plasma membrane is a fundamental process required for endocytosis. In cultured cells, most of the clathrin is localized to large patches that display little lateral mobility. The functional role of these regions is not clear, and it has been thought that they may represent artifacts of cell adhesion of cultured cells. Here we have analyzed clathrin organization in primary adipose cells isolated from mice, which are nonadherent and fully differentiated. The majority of clathrin on the plasma membrane of these cells (>60%) was found in large clathrin patches that displayed virtually no lateral mobility and persisted for many minutes, and a smaller amount was found in small spots that appeared and disappeared rapidly. Direct visualization of transferrin revealed that it bound onto large arrays of clathrin, internalizing through vesicles that emerge from these domains. High resolution imaging (50 images/s) revealed fluorescence intensity fluctuations consistent with the formation and detachment of coated vesicles from within large patches. These results reveal that large clathrin assemblies are active regions of endocytosis in mammalian cells and highlight the importance of understanding the mechanistic basis for this organization.  相似文献   

11.
Several chemical effectors were used to induce changes in spleen B cell membrane fluidity. Membrane fluidity was monitored by fluorescence polarization analysis of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH) and cell viability was checked not to be affected by the treatments. Membrane immunoglobulin (Ig) endocytosis by the living B cells with modified or unmodified membranes was quantitatively measured by flow cytometry, using a previously described method (Métézeau et al., 1982, 1984). The kinetics of endocytosis of membrane Ig was not affected by chemical effectors increasing membrane fluidity. On the contrary, increasing membrane microviscosity resulted in the slowing down and eventually the blocking of membrane Ig endocytosis. It is suggested that a step depending on membrane microviscosity is involved in the process of endocytosis; this step may become rate limiting when membranes are artificially rendered or naturally become (i.e. for pathological or particularly differentiated cells) more viscous.  相似文献   

12.
Layer-by-layer assembly of glucose oxidase (GOx) with single-wall carbon nanotubes (SWCNTs) is achieved on the electrode surface based on the electrostatic attraction between positively charged GOx in pH 3.8 buffer and negatively charged carboxylic groups of CNTs. The cyclic voltammetry and electrochemical impedance spectroscopy are used to characterize the formation of multilayer films. In deaerated buffer solutions, the cyclic voltammetry of the multilayer films of {GOx/CNT}n shows two pairs of well-behaved redox peaks that are assigned to the redox reactions of CNTs and GOx, respectively, confirming the effective immobilization of GOx on CNTs using the layer-by-layer technique. The redox peak currents of GOx increase linearly with the increased number of layers indicating the uniform growth of GOx in multilayer films. The dependence of the cyclic voltammetric response of GOx in multilayer films on the scan rate and pH is also studied. A linear decrease of the reduction current of oxygen at the {GOx/CNT}-modified electrodes with the addition of glucose suggests that such multilayer films of GOx retain the bioactivity and can be used as reagentless glucose biosensors.  相似文献   

13.
Carbon nanotubes (CNTs), the most promising material with unique characteristics, find its application in different fields ranging from composite materials to medicine and from electronics to energy storage. However, little is known about the mechanism behind the interaction of these particles with cells and their toxicity. So, here we investigated the adverse effects of multiwalled CNTs (MWCNTs) in rat lung epithelial (LE) cells. The results showed that the incubation of LE cells with 0.5–10 μg/mL of MWCNTs caused a dose‐ and time‐dependent increase in the formation of free radicals, the accumulation of peroxidative products, the loss of cell viability, and antioxidant depletion. The significant amount of incorporation of dUTPs in the nucleus after 24 h confirms the induction of apoptosis. It was also observed that there is an increase in the activity of both caspases‐3 and caspase‐8 in cells, with increases in time and the concentration of MWCNTs. No significant incorporation of dUTPs was observed in cells, incubated with z‐VAD‐fmk , which confirmed the role of caspases in DNA fragmentation. The present study reveals that MWCNTs induced oxidative stress and stimulated apoptosis signaling pathway through caspase activation in rat LE cell lines. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:333–344, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20296  相似文献   

14.
The high-throughput Condor environment now allows many simulations to be performed on related systems, whether the focus is on improving the statistics or on broadening the range of conditions under which these simulations run. We illustrate the scope of the approach by using equilibrium molecular dynamics (EMD) to calculate self-diffusivities of argon atoms diffusing through single wall carbon nanotubes (SWNT). The diameters of the tubes and their helicities were varied and different argon loadings were studied. We also considered the effect of the rigidity/flexibility of the tube on the diffusivity. We found that the helicity and flexibility of the tubes have almost no noticeable influences. The size of the pore had a small effect, but the diffusivity depended essentially on the fluid loading.  相似文献   

15.
The multidrug resistance gene product P-glycoprotein confers drug resistance to tumor cells by acting as a transporter that blocks the entry into the cell of a great variety of drugs and hydrophobic peptides. In this study we find that in drug-resistant cells, the insertion of the influenza virus fusion protein (hemagglutinin-2) into the plasma membrane is blocked and that the fusion of the viral envelope with the plasma membrane of these cells is impaired. Multidrug-resistant cells display significant resistance to infection by envelope viruses that invade cells by fusion with the plasma membrane, but not to infection by pH-dependent viruses that penetrate cells by fusion with endocytic vesicles. These observations suggest that multidrug resistance phenomena may protect cells from infection by a large group of disease-causing viruses that includes human immunodeficiency virus, herpes simplex virus, and some cancer-inducing retroviruses.  相似文献   

16.
Distribution and dynamics of cholesterol in the plasma membrane as well as internalization pathways for sterol from the cell surface are of great cell biological interest. Here, UV-sensitive wide field microscopy of the intrinsically fluorescent sterols, dehydroergosterol (DHE) and cholestatrienol (CTL) combined with advanced image analysis were used to study spatiotemporal sterol distribution in living macrophages, adipocytes and fibroblasts. Sterol endocytosis was directly visualized by time-lapse imaging and noise-robust tracking revealing confined motion of DHE containing vesicles in close proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other regions of the cell surface, and endocytosis contributed by 62% to total sterol uptake in J774 cells. DHE co-localized with fluorescent transferrin (Tf) in vesicles right after onset of endocytosis and in deepened surface patches of energy depleted cells. Surface caveolae labeled with GFP-tagged caveolin were not particularly enriched in DHE or CTL. Some sterol co-localized with internalized caveolin suggesting that caveolar endocytosis contributes to vesicular sterol uptake. These findings demonstrate that plasma membrane sterol is internalized by several endocytic pathways. Sterol endocytosis does not require formation of microscopically resolvable sterol clusters or enrichment of sterol in surface caveolae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Serine palmitoyltransferase (SPT) predominantly incorporates serine and fatty acyl-CoAs into diverse sphingolipids (SLs) that serve as structural components of membranes and signaling molecules within or amongst cells. However, SPT also uses alanine as a substrate in the contexts of low serine availability, alanine accumulation, or disease-causing mutations in hereditary sensory neuropathy type I, resulting in the synthesis and accumulation of 1-deoxysphingolipids (deoxySLs). These species promote cytotoxicity in neurons and impact diverse cellular phenotypes, including suppression of anchorage-independent cancer cell growth. While altered serine and alanine levels can promote 1-deoxySL synthesis, they impact numerous other metabolic pathways important for cancer cells. Here, we combined isotope tracing, quantitative metabolomics, and functional studies to better understand the mechanistic drivers of 1-deoxySL toxicity in cancer cells. We determined that both alanine treatment and SPTLC1C133W expression induce 1-deoxy(dihydro)ceramide synthesis and accumulation but fail to broadly impact intermediary metabolism, abundances of other lipids, or growth of adherent cells. However, we found that spheroid culture and soft agar colony formation were compromised when endogenous 1-deoxySL synthesis was induced via SPTLC1C133W expression. Consistent with these impacts on anchorage-independent cell growth, we observed that 1-deoxySL synthesis reduced plasma membrane endocytosis. These results highlight a potential role for SPT promiscuity in linking altered amino acid metabolism to plasma membrane endocytosis.  相似文献   

18.
The hyperthermophilic archaeon Pyrodictium grows in the form of a macroscopically visible network. It consists of cells entrapped in an extracellular matrix of hollow tubules, the "cannulae." Here, we present the three-dimensional structure of a single cell in conjunction with two extracellular cannulae, as determined by cryo-electron microscopy. To achieve this, the information from two independent tilt series of the same specimen was combined, with the specimen rotated in the second series. In the three-dimensional tomographic reconstruction, we were able to trace the two cannulae in their full length, in particular, also inside the cell. One cannula enters the periplasmic space, while the other cannula contacts the surface of the cell, the S-layer. This indicates that the cannulae interconnect individual cells with each other on the level of their periplasmic space; we do not, however, have evidence that they enter the cytoplasm of the cells. The implications of these data for possible functions of the cannulae are discussed.  相似文献   

19.
The success of many projected applications of carbon nano-tubes (CNTs) to living cells, such as intracellular sensors and nanovectors, will depend on how many CNTs are taken up by cells. Here we report the enhanced uptake by HeLa cells of single-walled CNTs coated with a designed peptide termed nano-1. Atomic force microscopy showed that the dispersions were composed of individual and small bundles of nano-1 CNTs with 0.7- to 32-nm diameters and 100- to 400-nm lengths. Spectroscopic characterizations revealed that nano-1 disperses CNTs in a non-covalent fashion that preserves CNT optical properties. Elemental analyses indicated that our sample preparation protocol involving sonication and centrifugation effectively eliminated metal impurities associated with CNT manufacturing processes. We further showed that the purified CNT dispersions are taken up by HeLa cells in a time- and temperature-dependent fashion, and that they do not affect the HeLa cell growth rate, evidence that the CNTs inside cells are not toxic under these conditions. Finally, we discovered that approximately 6-fold more CNTs are taken up by cells in the presence of nano-1 compared with medium containing serum but no peptide. The fact that coating CNTs with a peptide enhances uptake offers a strategy for improving the performance of applications that require CNTs to be inside cells.  相似文献   

20.
A fluorescent analog of the phagocytosis stimulating peptide tuftsin was prepared by coupling tetramethyl rhodamine isothiocyanate to a C-terminal elongated derivative of tuftsin. This analog, Thr-Lys-Pro-Arg-Gly-Lys(N epsilon-tetramethyl rhodamine)-OH, was used to visualize tuftsin receptors on mice macrophage cells by fluorescent image intensification. Fluorescent labelling was carried out at 37 degrees C, using a concentration of 200 nM and 2 microM of the fluorescent tuftsin derivative. The formation of peptide-receptor clusters and their subsequent internalization, as discerned by image intensification, were rapid processes, 5 min and 5-30 min, respectively. Preincubation of macrophages with tuftsin for various time intervals, followed by quantification of the tuftsin receptor using radiolabelled tuftsin, suggest that tuftsin receptors are initially increased in amount (5-7 min) and subsequently reduced (after 10-15 min) as judged by sites available for tritiated tuftsin. The binding studies are rather complementary to the fluorescence observations and support the assumption that the tuftsin receptor on the membrane of the mice macrophage cell is rapidly mobilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号