首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.

Background

The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma.

Methods

In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism.

Results

In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses.

Conclusions

Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.  相似文献   

2.

Background

It is essential to subculture the cells once cultured cells reach confluence. For this, trypsin is frequently applied to dissociate adhesive cells from the substratum. However, due to the proteolytic activity of trypsin, cell surface proteins are often cleaved, which leads to dysregulation of the cell functions.

Methods

In this study, a triplicate 2D-DIGE strategy has been performed to monitor trypsin-induced proteome alterations. The differentially expressed spots were identified by MALDI-TOF MS and validated by immunoblotting.

Results

36 proteins are found to be differentially expressed in cells treated with trypsin, and proteins that are known to regulate cell metabolism, growth regulation, mitochondrial electron transportation and cell adhesion are down-regulated and proteins that regulate cell apoptosis are up-regulated after trypsin treatment. Further study shows that bcl-2 is down-regulated, p53 and p21 are both up-regulated after trypsinization.

Conclusions

In summary, this is the first report that uses the proteomic approach to thoroughly study trypsin-induced cell physiological changes and provides researchers in carrying out their experimental design.  相似文献   

3.

Background

Somatic embryogenesis (SE) is a complex biological process that occurs under inductive conditions and causes fully differentiated cells to be reprogrammed to an embryo like state. In order to get a better insight about molecular basis of the SE in Crocus sativus L. and to characterize differentially accumulated proteins during the process, a proteomic study based on two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry has been carried out.

Results

We have compared proteome profiles of non-embryogenic and embryogenic calli with native corm explants. Total soluble proteins were phenol-extracted and loaded on 18 cm IPG strips for the first dimension and 11.5% sodium dodecyl sulfate-polyacrylamide gels for the second dimension. Fifty spots with more than 1.5-fold change in abundance were subjected to mass spectrometry analysis for further characterization. Among them 36 proteins could be identified, which are classified into defense and stress response, protein synthesis and processing, carbohydrate and energy metabolism, secondary metabolism, and nitrogen metabolism.

Conclusion

Our results showed that diverse cellular and molecular processes were affected during somatic to embryogenic transition. Differential proteomic analysis suggests a key role for ascorbate metabolism during early stage of SE, and points to the possible role of ascorbate-glutathione cycle in establishing somatic embryos.  相似文献   

4.

Background

Glutathione reductase (GR) plays a critical role in the maintenance of physiological redox status in cells. However, the comprehensive investigations of GR-modulated oxidative stress have not been reported.

Methods

In the present study, we cultured a human lung adenocarcinoma line CL1-0 and its GR-knockdown derivative CL1-0ΔGR to evaluate their differential responses to UVB-irradiation.

Results

We identified 18 proteins that showed significant changes under UVB-irradiation in CL1-0ΔGR cells rather than in CL1-0 cells. Several proteins involving protein folding, metabolism, protein biosynthesis and redox regulation showed significant changes in expression.

Conclusions

In summary, the current study used a comprehensive lung adenocarcinoma-based proteomic approach for the identification of GR-modulated protein expression in response to UVB-irradiation. To our knowledge, this is the first global proteomic analysis to investigate the role of GR under UVB-irradiation in mammalian cell model.  相似文献   

5.

Background

Natural microbial communities are extremely complex and dynamic systems in terms of their population structure and functions. However, little is known about the in situ functions of the microbial communities.

Results

This study describes the application of proteomic approaches (metaproteomics) to observe expressed protein profiles of natural microbial communities (metaproteomes). The technique was validated using a constructed community and subsequently used to analyze Chesapeake Bay microbial community (0.2 to 3.0 μm) metaproteomes. Chesapeake Bay metaproteomes contained proteins from pI 4–8 with apparent molecular masses between 10–80 kDa. Replicated middle Bay metaproteomes shared ~92% of all detected spots, but only shared 30% and 70% of common protein spots with upper and lower Bay metaproteomes. MALDI-TOF analysis of highly expressed proteins produced no significant matches to known proteins. Three Chesapeake Bay proteins were tentatively identified by LC-MS/MS sequencing coupled with MS-BLAST searching. The proteins identified were of marine microbial origin and correlated with abundant Chesapeake Bay microbial lineages, Bacteroides and α-proteobacteria.

Conclusion

Our results represent the first metaproteomic study of aquatic microbial assemblages and demonstrate the potential of metaproteomic approaches to link metagenomic data, taxonomic diversity, functional diversity and biological processes in natural environments.  相似文献   

6.
7.

Objective

The collection of lung fluid using a suction catheter (s-Cath) and non-bronchoscopic bronchoalveolar lavage (mini-BAL) are two minimally invasive methods of sampling the distal airspaces in patients with the acute respiratory distress syndrome (ARDS). The objective of this study was to determine the similarity of the lung fluid samples recovered by these methods using proteomic analysis.

Methods

Distal lung fluid samples were collected from seven mechanically ventilated patients with ARDS using both s-Cath and mini-BAL in each patient and compared using two-dimensional difference gel electrophoresis. Protein spots of interest were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

Main Results

An average of 2,164 spots was detected in the s-Cath and mini-BAL samples. Of these, 68.4% of the protein spots were similar between the s-Cath and mini-BAL samples, 13.2% were increased in s-Cath compared to mini-BAL, and 18.4% were decreased in s-Cath compared to mini-BAL. For each of the seven subjects, overabundance analysis showed that the actual number of differentially expressed spots in the mini-BAL and s-Cath sample was more than the expected number if the samples were identical. There were nine proteins that were consistently differentially expressed between the mini-BAL and s-Cath samples. Of these nine proteins, five are abundantly found in neutrophils or airway epithelial cells, suggesting that the s-Cath may sample the bronchial airways to a greater extent than mini-BAL.

Conclusion

Proteomic analysis of mini-BAL and s-Cath samples shows for the first time that, although these two methods for sampling the lungs of critically ill patients are generally similar, the s-Cath method oversamples the distal airways compared to the mini-BAL method.  相似文献   

8.

Introduction

In rheumatoid arthritis (RA), synovial fluid (SF) contains a large number of neutrophils that contribute to the inflammation and destruction of the joints. The SF also contains granulocyte-macrophage colony-stimulating factor (GM-CSF), which sustains viability of neutrophils and activates their functions. Using proteomic surveillance, we here tried to elucidate the effects of GM-CSF on neutrophils.

Methods

Neutrophils stimulated by GM-CSF were divided into four subcellular fractions: cytosol, membrane/organelle, nuclei, and cytoskeleton. Then, proteins were extracted from each fraction and digested by trypsin. The produced peptides were detected using matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS).

Results

We detected 33 peptide peaks whose expression was upregulated by more than 2.5-fold in GM-CSF stimulated neutrophils and identified 11 proteins out of the 33 peptides using MALDI-TOF/TOF MS analysis and protein database searches. One of the identified proteins was neutrophil gelatinase-associated lipocalin (NGAL). We confirmed that the level of NGAL in SF was significantly higher in patients with RA than in those with osteoarthritis. We next addressed possible roles of the increased NGAL in RA. We analysed proteome alteration of synoviocytes from patients with RA by treatment with NGAL in vitro. We found that, out of the detected protein spots (approximately 3,600 protein spots), the intensity of 21 protein spots increased by more than 1.5-fold and the intensity of 10 protein spots decreased by less than 1 to 1.5-fold as a result of the NGAL treatment. Among the 21 increased protein spots, we identified 9 proteins including transitional endoplasmic reticulum ATPase (TERA), cathepsin D, and transglutaminase 2 (TG2), which increased to 4.8-fold, 1.5-fold and 1.6-fold, respectively. Two-dimensional electrophoresis followed by western blot analysis confirmed the upregulation of TERA by the NGAL treatment and, moreover, the western blot analysis showed that the NGAL treatment changed the protein spots caused by post-translational modification of TERA. Furthermore, NGAL cancelled out the proliferative effects of fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) on chondrocytes from a patient with RA and proliferative effect of FGF-2 on chondrosarcoma cells.

Conclusions

Our results indicate that GM-CSF contributes to the pathogenesis of RA through upregulation of NGAL in neutrophils, followed by induction of TERA, cathepsin D and TG2 in synoviocytes. NGAL and the upregulated enzymes may therefore play an important role in RA.  相似文献   

9.

Background and aims

Copper (Cu) is an essential micronutrient required for growth and development of plants. However, excess Cu is toxic to plants. To understand the mechanisms involved in copper stress response, a proteomic approach was used to investigate the differences in Cu stress-induced protein expression between a Cu-tolerant variety (B1139) and a Cu-sensitive one (B1195) of rice.

Methods

Rice seedlings were exposed to 8 μM Cu for 3 days, with plants grown in the normal nutrient solution containing 0.32 μM Cu serving as the control. Proteins were extracted from the roots and separated by two-dimensional PAGE. Thirty four proteins were identified using MALDI-TOF mass spectrometry.

Results

Thirty-four protein spots were found to be differently expressed in the Cu-stressed roots in at least one variety of rice, including those involved in antioxidative defense, redox regulation, stress response, sulfur and glutathione (GSH) metabolism, carbohydrate metabolism, signal transduction, and some other proteins with various functions. Nine proteins, including putative cysteine synthase, probable serine acetyltransferase 3, L-ascorbate peroxidase 1, putative glutathione S-transferase 2, and thioredoxin-like 3-3, exhibited a greater increase in response to Cu stress in the Cu-tolerant variety B1139 compared with the Cu–sensitive variety B1195.

Conclusion

The majority of the proteins showing differential expression in response to Cu exposure are involved in the redox regulation, and sulfur and GSH metabolism, suggesting that these proteins, together with antioxidant enzymes, play an important role in the detoxification of excess Cu and maintaining cellular homeostasis.  相似文献   

10.
Zhang W  Shao J  Liu G  Tang F  Lu Y  Zhai Z  Wang Y  Wu Z  Yao H  Lu C 《Proteome science》2011,9(1):32-11

Background

Actinobacillus pleuropneumoniae (APP) is one of the most important swine pathogens worldwide. Identification and characterization of novel antigenic APP vaccine candidates are underway. In the present study, we use an immunoproteomic approach to identify APP protein antigens that may elicit an immune response in serotype 1 naturally infected swine and serotype 1 virulent strain S259-immunized rabbits.

Results

Proteins from total cell lysates of serotype 1 APP were separated by two-dimensional electrophoresis (2DE). Western blot analysis revealed 21 immunoreactive protein spots separated in the pH 4-7 range and 4 spots in the pH 7-11 range with the convalescent sera from swine; we found 5 immunoreactive protein spots that separated in the pH 4-7 range and 2 in the pH 7-11 range with hyperimmune sera from S259-immunized rabbits. The proteins included the known antigens ApxIIA, protective surface antigen D15, outer membrane proteins P5, subunit NqrA. The remaining antigens are being reported as immunoreactive proteins in APP for the first time, to our knowledge.

Conclusions

We identified a total of 42 immunoreactive proteins of the APP serotype 1 virulent strain S259 which represented 32 different proteins, including some novel immunoreactive factors which could be researched as vaccine candidates.  相似文献   

11.
12.

Background

The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed.

Result

Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings.

Conclusion

These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy.  相似文献   

13.

Key message

Cell wall polysaccharides’ occurrences in two internodes of different development stages in M. lutarioriparius stem were analyzed and three major differences between them were identified by cell wall polysaccharide probes.

Abstract

Deposition and modification of cell wall polysaccharides during stem development affect biomass yield of the Miscanthus energy crop. The distribution patterns of cell wall polysaccharides in the 2nd and the 11th internodes of M. lutarioriparius stem were studied using in situ immunofluorescence assay. Crystalline cellulose and xylan were present in most of the stem tissues except phloem, where xyloglucan was the major composition of hemicellulose. The distribution of pectin polysaccharides varied in stem tissues, particularly in vascular bundle elements. Xylogalacturonan, feruloylated-1,4-β-d-galactan and (1,3)(1,4)-β-glucans, however, were insufficient for antibodies binding in both internodes. Furthermore, the distribution of cell wall polysaccharides was differentiated in the two internodes of M. lutarioriparius. The significant differences in the pattern of occurrence of long 1,5-α-l-arabinan chain, homogalacturonan and fucosylated xyloglucans epitope were detected between the two internodes. In addition, the relationships between probable functions of polysaccharides and their distribution patterns in M. lutarioriparius stem cell wall were discussed, which would be helpful to understand the growth characteristics of Miscanthus and identify potential targets for either modification or degradation.  相似文献   

14.

Introduction

Early detection, assessment of disease progression, and application of an appropriate therapeutic intervention are all important for the care of patients with type 2 diabetes. Currently, however, there is no simple test for early detection of type 2 diabetes. Established diagnostic tests for the disease including oral glucose tolerance, fasting blood glucose, and hemoglobin A1c are relatively late markers where the disease has already progressed. Since blood is in direct contact with many tissues, we hypothesized that pathological tissue changes are likely to be reflected in proteomic profiles of plasma.

Methods

Mice were reared either on regular chow or a high-fat diet at weaning and several physiological responses (i.e., weight, fasting plasma glucose and insulin, and glucose tolerance) were monitored at regular time intervals. Plasma was collected at regular intervals for proteomic analysis by two-dimensional gel electrophoresis and subsequent mass spectrometry.

Results

Onset of hyperinsulinemia with corresponding glucose intolerance was observed in 2 weeks and fasting blood glucose levels rose significantly after 4 weeks on the high-fat diet. Many proteins were found to exist in multiple forms (isoforms). Levels of some isoforms including plasma retinol binding protein, transthyretin, Apolipoprotein A1, and kininogen showed significant changes as early as 4 weeks which coincided with the very early development of glucose intolerance.

Conclusions

These results show that a proteomic approach to study the development of type 2 diabetes may uncover unknown early post-translationally modified diagnostic and/or therapeutic protein targets.  相似文献   

15.

Background

Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two-dimensional gel electrophoresis (2D-PAGE).

Results

Protein spots excised from 2D-PAGE gels, were subjected to in-gel tryptic digestion and identified by liquid chromatography – tandem mass spectrometry. A total of 47 protein spots were identified. Immunological verification was performed for several of the differentially regulated proteins where suitable antibodies could be obtained. Functional annotation clustering revealed similarities as well as differences between the tumours. Twelve proteins that changed similarly in both tumours included up-regulation of rho GDP-dissociation inhibitor 2, proteasome subunit α type 3, transforming acidic coiled-coil containing protein 3, mitochondrial ornithine aminotransferase and epidermal fatty acid binding protein and down-regulation of adenylosuccinate synthetase, tubulin β-3 chain, a 25 kDa actin fragment, proteasome subunit β type 9, cofilin-1 and glia maturation factor γ.

Conclusion

Some of the commonly differentially expressed proteins are also differentially expressed in other tumours and may be putative diagnostic and/or prognostic markers for lymphomas.  相似文献   

16.

Key message

This is the first reported proteomic analysis to study the dormancy breaking of Magnolia sieboldii seeds. Our results provide a fundamental reference for further studies on the regulation of protein expression during seed germination.

Abstract

Magnolia sieboldii K. Koch is an ornamental tree. The deep dormancy of its seeds hinders its cultivation for economic purposes. The biochemical basis of the regulation of seed germination remains poorly understood. The present study aimed to identify differentially expressed proteins in germinated seeds of M. sieboldii using polyethylene glycol fractionation. In total, 59 differentially expressed protein spots from two-dimensional gel maps were detected, 33 of which were identified by mass spectrometry. They were assigned to eight functional classes on the basis of their putative biological functions: photosynthesis (3 %), chaperonin/heat shock protein (9 %), protein and amino acid synthesis (9 %), stress/defense (18 %), cytoskeleton structure (3 %), metabolism (18 %), hormone and polyamine (9 %) and storage proteins (31 %). Among the other functions, the effects of plant hormones on seed germination may be one of the most important functions in plant growth. Gibberellins and ethylene positively regulate seed germination. The activities of several hormone-associated proteins possibly influencing seed germination were increased. The characterization of these proteins will be of great help in identifying the molecular mechanism underlying seed germination.  相似文献   

17.

Introduction

Quantitative proteomics using tandem mass spectrometry is an attractive approach for identification of potential cancer biomarkers. Fractionation of complex tissue samples into subproteomes prior to mass spectrometric analyses increases the likelihood of identifying cancer-specific proteins that might be present in low abundance. In this regard, glycosylated proteins are an interesting class of proteins that are already established as biomarkers for several cancers.

Materials and Methods

In this study, we carried out proteomic profiling of tumor and adjacent non-cancer liver tissues from hepatocellular carcinoma (HCC) patients. Glycoprotein enrichment from liver samples using lectin affinity chromatography and subsequent 18O/16O labeling of peptides allowed us to obtain relative abundance levels of lectin-bound proteins. As a complementary approach, we also examined the relative expression of proteins in HCC without glycoprotein enrichment. Lectin affinity enrichment was found to be advantageous to quantitate several interesting proteins, which were not detected in the whole proteome screening approach. We identified and quantitated over 200 proteins from the lectin-based approach. Interesting among these were fetuin, cysteine-rich protein 1, serpin peptidase inhibitor, leucine-rich alpha-2-glycoprotein 1, melanoma cell adhesion molecule, and heparan sulfate proteoglycan-2. Using lectin affinity followed by PNGase F digestion coupled to 18O labeling, we identified 34 glycosylation sites with consensus sequence N-X-T/S. Western blotting and immunohistochemical staining were carried out for several proteins to confirm mass spectrometry results.

Conclusion

This study indicates that quantitative proteomic profiling of tumor tissue versus non-cancerous tissue is a promising approach for the identification of potential biomarkers for HCC.  相似文献   

18.

Background

The importance of cell-cell junction proteins (including armadillo proteins) in tumor biology is known, but limited with regard to plakophilins. We explored the relationship between plakophilins (PKP1, PKP2, PKP3) to gastric cancer via immunohistochemical techniques.

Methods

We compared the immunohistochemistry of PKPs in 34 gastric adenocarcinomas and 20 normal gastric tissues.

Results

In gastric cancer, PKP1 expression was unchanged but PKP2 and PKP3 were significantly decreased as compared to normal controls. There was no observable clinical association with PKP1 or PKP2 expression; however, low PKP3 level and poor prognosis appeared to correlate with regards to node number and tumor stage. The mean disease-free survival (DFS) was 38 ± 3 months (range: 32 - 44) and mean overall survival (OS) 42 ± 4 months (range: 38 - 50). Decreased PKP2 appeared to negatively impact DFS.

Conclusion

Decreased PKP2 and PKP3 may be early prognostic markers and loss of PKP3 expression during gastric carcinoma progression may indicate an invasive phenotype.  相似文献   

19.

Background

In recent years, differential analysis of proteins from human saliva, i.e., proteomic analysis, has received much attention mainly due to its unstressful sampling and its great potential for biomarker research. It is widely considered that saliva is a highly stable medium for proteins thanks to a large amount of antiprotease agents, even at ambient and physiological temperatures.

Objective

To find the best protocol for the handling of samples, we have investigated the stability of saliva proteins stored at different temperatures (from ?80 to 20°C) by one- and two-dimensional electrophoresis.

Results

At 20°C, no major changes were observed on protein one-dimensional profiles following 1 day of storage; however, between 7 days and 30 days, the native alpha-amylase band decreased slightly to give several bands with molecular weight between 35 and 25 kDa. The same phenomenon appeared after 30 days of storage at 4°C. Two-dimensional analysis of salivary maps revealed degradation from day 7 of several protein groups for samples stored at 20°C.

Conclusion

All these findings have to be carefully considered when saliva is collected for clinical proteomic analysis. We can conclude that, to maintain the optimum stability of saliva proteins, saliva samples should be collected on ice followed by the addition of protease inhibitor cocktail, centrifuged to remove insoluble material, and stored at ?20 or ?80°C.  相似文献   

20.
In many grain crops, the length of internodes below ears is related to lodging resistance in the field. To clarify the relationship between internode morphological differentiation and internode proteins during primary elongation stages in maize (Zea mays L.), we used proteomics analysis to explore factors regulating internodes in eight elite inbred maize lines: Zong3, Yu87-1, Xun9058, Xun928, Chang7-2, Zheng58, P2, and A50—the parents of four commercial hybrids in China (Yuyu22, Xundan20, Zhengdan958, and Jinsai6850). A total of 66 protein spots corresponding to 48 non-redundant proteins were identified in developing seventh to ninth leaf internodes. Of these spots, seven spots corresponding to six non-redundant proteins were related to the gibberellin (GA) pathway. Nineteen protein spots corresponding to 13 non-redundant proteins were related to the auxin (IAA) pathway, and 31 protein spots corresponding to 20 non-redundant proteins were associated with ethylene biosynthesis. A correlation analysis revealed that GA and IAA contents are negatively correlated with internode length, with the first hormone more strongly length-correlated than the second.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号