首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI3P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock-down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.  相似文献   

2.
The essential amino acids (EAA) activate anabolic signalling through mechanisms, which are unclear in detail but include increased signalling through the mammalian target of rapamycin complex 1 (mTORC1). Of all the EAA, the branched chain amino acid (BCAA) leucine has been suggested as the most potent in stimulating protein synthesis, although there have been no studies investigating the effects of each EAA on anabolic signalling pathways. We therefore undertook a systematic analysis of the effect of each EAA on mTORC1 signalling in C2C12 myotubes whereby cells were serum (4 h) and amino acid (1 h) starved before stimulation with 2 mM of each amino acid. Immunoblotting was used to detect phosphorylated forms of protein kinase B (Akt)/mTORC1 signalling enzymes. The phosphorylation of Akt was unchanged by incubation with EAA. Phosphorylation of mTOR and 4E binding protein-1 (4EBP1) were increased 1.67 ± 0.1-fold and 2.5 ± 0.1-fold, respectively, in response to leucine stimulation but not in response to any other EAA. The phosphorylation of ribosomal s6 kinase (p70S6K1) was increased by stimulation with all EAA with the exceptions of isoleucine and valine. However, the increase with leucine was significantly greater, 5.9 ± 0.3-fold compared to 1.6–2.0-fold for the non-BCAA EAA. This pattern of activation was identical in ribosomal protein s6 (RPS6) with the additional effect of leucine being 3.8 ± 0.3-fold versus 1.5–2.0-fold. Phosphorylation of eukaryotic initiation/elongation factors eIF2α and eEF2 were unaffected by EAA. We conclude that leucine is unique amongst the amino acids in its capacity to stimulate both mTOR and 4EBP1 phosphorylation and to enhance p70S6K1 signalling.  相似文献   

3.
Recent studies have shown that the nutrient input to the mTOR Complex1/S6K1 signaling pathway is mediated by class 3 PI3K or hVps34, the oldest member of the PI3K family. Moreover, studies to date would suggest that during the evolution of multicellular organisms this ancient branch of the pathway was merged with the growth-factor-hormone-controlled class 1 PI3K pathway at the level of mTOR Complex1 to control the development and growth of the organism. However, hVps34 also plays a role in the regulation of macroautophagy - the mechanism by which cells generate nutrients, such as amino acids, through the degradation of intracellular complexes, including mitochondria and ribosomes. These functions of hVps34 initially appear contradictory, since increased mTOR Complex1 activation is triggered by increased amino acid levels, while autophagy is triggered when cells are faced with amino acid deprivation.  相似文献   

4.
The rapamycin-sensitive mammalian target of rapamycin (mTOR) complex, mTORC1, regulates cell growth in response to mitogenic signals and amino acid availability. Phospholipase D (PLD) and its product, phosphatidic acid, have been established as mediators of mitogenic activation of mTORC1. In this study, we identify a novel role for PLD1 in an amino acid-sensing pathway. We find that amino acids activate PLD1 and that PLD1 is indispensable for amino acid activation of mTORC1. Activation of PLD1 by amino acids requires the class III phosphatidylinositol 3-kinase hVps34, which stimulates PLD1 activity through a functional interaction between phosphatidylinositol 3-phosphate and the Phox homology (PX) domain of PLD1. Furthermore, amino acids stimulate PLD1 translocation to the lysosomal region where mTORC1 activation occurs in an hVps34-dependent manner, and this translocation is necessary for mTORC1 activation. The PX domain is required for PLD1 translocation, mTORC1 activation, and cell size regulation. Finally, we show that the hVps34-PLD1 pathway acts independently of, and in parallel to, the Rag pathway in regulating amino acid activation of mTORC1.  相似文献   

5.
The amino acid sensitive TOR pathway from yeast to mammals   总被引:1,自引:0,他引:1  
Dann SG  Thomas G 《FEBS letters》2006,580(12):2821-2829
The target of rapamycin (TOR) is an ancient effector of cell growth that integrates signals from growth factors and nutrients. Two downstream effectors of mammalian TOR, the translational components S6K1 and 4EBP1, are commonly used as reporters of mTOR activity. The conical signaling cascade initiated by growth factors is mediated by PI3K, PKB, TSC1/2 and Rheb. However, the process through which nutrients, i.e., amino acids, activate mTOR remains largely unknown. Evidence exists for both an intracellular and/or a membrane bound sensor for amino acid mediated mTOR activation. Research in eukaryotic models, has implicated amino acid transporters as nutrient sensors. This review describes recent advances in nutrient signaling that impinge on mTOR and its targets including hVps34, class III PI3K, a transducer of nutrient availability to mTOR.  相似文献   

6.

Background

Exposure of pregnant mothers to elevated concentrations of circulating testosterone levels is associated with fetal growth restriction and delivery of small-for-gestational-age babies. We examined whether maternal testosterone crosses the placenta to directly suppress fetal growth or if it modifies placental function to reduce the capacity for transport of nutrients to the fetus.

Methods

Pregnant rats were exposed to testosterone propionate (TP; 0.5 mg/kg) by daily subcutaneous injection from gestational days (GD) 15-19. Maternal and fetal testosterone levels, placental nutrient transport activity and expression of transporters and birth weight of pups and their anogenital distances were determined.

Results

This dose of TP doubled maternal testosterone levels but had no effect on fetal testosterone levels. Maternal daily weight gain was significantly lower only on GD 19 in TP treated dams compared to controls. Placental weight and birth weight of pups were significantly reduced, but the anogenital distance of pups were unaffected by TP treatment. Maternal plasma amino acids concentrations were altered following testosterone exposure, with decreases in glutamine, glycine, tyrosine, serine, proline, and hydroxyproline and increases in asparagine, isoleucine, leucine, lysine, histidine and arginine. In the TP dams, placental system A amino acid transport activity was significantly reduced while placental glucose transport capacity was unaffected. Decreased expression of mRNA and protein levels of slc38a2/Snat2, an amino acid transporter, suggests that reduced transporter proteins may be responsible for the decrease in amino acid transport activity.

Conclusions

Taken together, these data suggest that increased maternal testosterone concentrations do not cross the placenta to directly suppress fetal growth but affects amino acid nutrient delivery to the fetus by downregulating specific amino acid transporter activity.  相似文献   

7.

Aim

Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth.

Methods

Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.

Results

Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.

Conclusions

Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.  相似文献   

8.
9.

Background

Anabolic resistance is the inability to increase protein synthesis in response to an increase in amino acids following a meal. One potential mediator of anabolic resistance is endoplasmic reticulum (ER) stress. The purpose of the present study was to test whether ER stress impairs the response to growth factors and leucine in muscle cells.

Methods

Muscle cells were incubated overnight with tunicamycin or thapsigargin to induce ER stress and the activation of the unfolded protein response, mTORC1 activity at baseline and following insulin and amino acids, as well as amino acid transport were determined.

Results

ER stress decreased basal phosphorylation of PKB and S6K1 in a dose-dependent manner. In spite of the decrease in basal PKB phosphorylation, insulin (10–50 nM) could still activate both PKB and S6K1. The leucine (2.5–5 mM)-induced phosphorylation of S6K1 on the other hand was repressed by low concentrations of both tunicamycin and thapsigargin. To determine the mechanism underlying this anabolic resistance, several inhibitors of mTORC1 activation were measured. Tunicamycin and thapsigargin did not change the phosphorylation or content of either AMPK or JNK, both increased TRB3 mRNA expression and thapsigargin increased REDD1 mRNA. Tunicamycin and thapsigargin both decreased the basal phosphorylation state of PRAS40. Neither tunicamycin nor thapsigargin prevented phosphorylation of PRAS40 by insulin. However, since PKB is not activated by amino acids, PRAS40 phosphorylation remained low following the addition of leucine. Blocking PKB using a specific inhibitor had the same effect on both PRAS40 and leucine-induced phosphorylation of S6K1.

Conclusion

ER stress induces anabolic resistance in muscle cells through a PKB/PRAS40-induced blockade of mTORC1.  相似文献   

10.
Aging is associated with a gradual decline in skeletal muscle mass and strength leading to increased risk for functional impairments. Although basal rates of protein synthesis and degradation are largely unaffected with age, the sensitivity of older muscle cells to the anabolic actions of essential amino acids appears to decline. The major pathway through which essential amino acids induce anabolic responses involves the mammalian target of rapamycin (mTOR) Complex 1, a signaling pathway that is especially sensitive to regulation by the branched chain amino acid leucine. Recent evidence suggests that muscle of older individuals require increasing concentrations of leucine to maintain robust anabolic responses through the mTOR pathway. While the exact mechanisms for the age-related alterations in nutritional signaling through the mTOR pathway remain elusive, there is increasing evidence that decreased sensitivity to insulin action, reductions in endothelial function, and increased oxidative stress may be underlying factors in this decrease in anabolic sensitivity. Ensuring adequate nutrition, including sources of high quality protein, and promoting regular physical activity will remain among the frontline defenses against the onset of sarcopenia in older individuals.  相似文献   

11.
Autophagy, a major bulk proteolytic pathway, contributes to intracellular protein turnover, together with protein synthesis. Both are subject to dynamic control by amino acids and insulin. The mechanisms of signaling and cross-talk of their physiological anabolic effects remain elusive. Recent studies established that amino acids and insulin induce p70 S6 kinase (p70(S6k)) phosphorylation by mTOR, involved in translational control of protein synthesis. Here, the signaling mechanisms of amino acids and insulin in macroautophagy in relation to mTOR were investigated. In isolated rat hepatocytes, both regulatory amino acids (RegAA) and insulin coordinately activated p70(S6k) phosphorylation, which was completely blocked by rapamycin, an mTOR inhibitor. However, rapamycin blocked proteolytic suppression by insulin, but did not block inhibition by RegAA. These contrasting results suggest that insulin controls autophagy through the mTOR pathway, but amino acids do not. Furthermore, micropermeabilization with Saccharomyces aureus alpha-toxin completely deprived hepatocytes of proteolytic responsiveness to RegAA and insulin, but still maintained p70(S6k) phosphorylation by RegAA. In contrast, Leu(8)-MAP, a non-transportable leucine analogue, did not mimic the effect of leucine on p70(S6k) phosphorylation, but maintained the activity on proteolysis. Finally, BCH, a System L-specific amino acid, did not affect proteolytic suppression or mTOR activation by leucine. All the results indicate that mTOR is not common to the signaling mechanisms of amino acids and insulin in autophagy, and that the amino acid signaling starts extracellularly with their "receptor(s)," probably other than transporters, and is mediated through a novel route distinct from the mTOR pathway employed by insulin.  相似文献   

12.
13.
14.
15.
Nutrient overload leads to obesity, insulin resistance, and often type 2 diabetes. Whereas increased fat intake is commonly cited as the major factor in diet-induced dysmetabolic states, increased protein consumption also contributes, through elevated circulating amino acids. Recent studies have revealed that ribosomal protein S6 kinase 1, S6K1, an effector of mTOR, is sensitive to both insulin and nutrients, including amino acids. Although S6K1 is an effector of growth, recent reports show that amino acids also negatively affect insulin signaling through mTOR/S6K1 phosphorylation of IRS1. Moreover, rather than signaling through the class 1 PI3K pathway, amino acids appear to mediate mTOR activation through class 3 PI3K, or hVps34. Consistent with this, infusion of amino acids into humans leads to S6K1 activation, inhibition of insulin-induced class 1 PI3K activation, and insulin resistance. Thus, S6K1 may mediate deleterious effects, like insulin resistance, and potentially type 2 diabetes in the face of nutrient excess.  相似文献   

16.

Background

Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR) and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism.

Methods

Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits), ACS (acyl-CoA synthase), AMPK (AMP-activated protein kinase, alpha2 catalytic subunit), CPT1B (carnitine palmitoyltransferase-1 beta subunit), MCD (malonyl-CoA decarboxylase) in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC.

Results

A significant down regulation of insulin receptor protein (p < 0.05) and reduced expression of ACS and ACCα mRNA (p < 0.05) were observed in skeletal muscle of IUGR newborns. Immunoblotting showed no significant change in ACCα content.

Conclusion

Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.  相似文献   

17.

Background

Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation.

Results

Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a β-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative β-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4.

Conclusion

RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating β-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.  相似文献   

18.

Background

Protein-energy malnutrition (PEM) can lead to growth hormone (GH) resistance. Leucine supplementation diets have been shown to increase protein synthesis in muscles. Our study aimed at investigating if long-term leucine supplementation could modulate GH-insulin-like growth factor (IGF)-1 system function and mammalian target of rapamycin (mTOR)-related signal transduction in skeletal muscles in a rat model of severe malnutrition.

Methodology/Principal Findings

Male Sprague-Dawley rats (n = 50; weight, 302 ± 5 g) were divided into 5 treatment groups, including 2 control groups (a normal control group that was fed chow and ad libitum water [CON, n = 10] and a malnourished control group [MC, n = 10] that was fed a 50% chow diet). After undergoing a weight loss stage for 4 weeks, rats received either the chow diet (MC-CON, n = 10), the chow diet supplemented with low-dose leucine (MC-L, n = 10), or the chow diet supplemented with high-dose leucine (MC-H, n = 10) for 2 weeks. The muscle masses of the gastrocnemius, soleus, and extensor digitorum longus were significantly reduced in the MC group. Re-feeding increased muscle mass, especially in the MC-L and MC-H groups. In the MC group, serum IGF-1, IGF-binding protein (IGFBP)-3, and hepatic growth hormone receptor (GHR) levels were significantly decreased and phosphorylation of the downstream anabolic signaling effectors protein kinase B (Akt), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were significantly lower than in other groups. However, serum IGF-1 and IGF binding protein (IGFBP)-3 concentrations and hepatic growth hormone receptor (GHR) levels were significantly higher in the MC-L and MC-H groups than in the MC-CON group, and serum IGFBP-1 levels was significantly reduced in the MC-L and MC-H groups. These changes were consistent with those observed for hepatic mRNA expression levels. Phosphorylation of the downstream anabolic signaling effectors Akt, mTOR, and S6K1 were also significantly higher in the MC-L and MC-H groups than in the MC-CON group.

Conclusion/Significance

Our data are the first to demonstrate that long-term supplementation with leucine improved acquired growth hormone resistance in rats with protein-energy malnutrition. Leucine might promote skeletal muscle protein synthesis by regulating downstream anabolic signaling transduction.  相似文献   

19.
Acute administration of leucine and norleucine activates the mammalian target of rapamycin (mTOR) cell-signaling pathway and increases rates of protein synthesis in a number of tissues in fasted rats. Although persistent stimulation of mTOR signaling is thought to increase protein synthetic capacity, little information is available concerning the effects of chronic administration of these agonists on protein synthesis, mTOR signal transduction, or leucine metabolism. Hence, we developed a model of chronic leucine/norleucine supplementation via drinking water and examined the effects of chronic (12 days) supplementation on protein synthesis in adipose tissue, kidney, heart, liver, and skeletal muscle from ad libitum-fed rats. The relative concentration of proteins involved in mTOR signaling and the two initial steps in leucine oxidation were also examined. Leucine or norleucine supplementation was accompanied by increased rates of protein synthesis in adipose tissue, liver, and skeletal muscle, but not in heart or kidney. Supplementation was not associated with increases in the anabolic hormones insulin or insulin-like growth factor I. Chronic supplementation did not cause apparent adaptation in either components of the mTOR cell-signaling pathway that respond to leucine (mTOR, ribosomal protein S6 kinase, and eukaryotic initiation factor 4E-binding protein-1) or the first two steps in leucine metabolism (the mitochondrial isoform of branched-chain amino acid transaminase, branched-chain keto acid dehydrogenase, and branched-chain keto acid dehydrogenase kinase), which may be involved in terminating the signal from leucine. These results suggest that provision of leucine or norleucine supplementation via the drinking water results in stimulation of postprandial protein synthesis in adipose tissue, skeletal muscle, and liver without notable adaptive changes in signaling proteins or metabolic enzymes.  相似文献   

20.

Background

Nutrition support for critically ill patients supplemented with additional modular protein may promote skeletal muscle protein anabolism in addition to counteracting acute nitrogen loss. The present study was designed to investigate whether the essential amino acid (EAA) enriched high-protein enteral nutrition (EN) modulates the insulin-like growth factor-1 (IGF-1) system and activates the mammalian target of rapamycin (mTOR) anabolic signaling pathway in a trauma-hemorrhagic shock (T-HS) rat model.

Methodology/Principal Findings

Male Sprague-Dawley rats (n = 90, 278.18±0.94 g) were randomly assigned to 5 groups: (1) normal control, (2) pair-fed, (3) T-HS, (4) T-HS and standard EN, and (5) T-HS and EAA enriched high-protein EN. Six animals from each group were harvested on days 2, 4, and 6 for serum, gastrocnemius, soleus, and extensor digitorum longus sample collection. T-HS significantly reduced muscle mass. Nutrition support maintained muscle mass, especially the EAA enriched high-protein EN. Meanwhile, a pronounced derangement in IGF-1-IGFBPs axis as well as impaired mTOR transduction was observed in the T-HS group. Compared with animals receiving standard EN, those receiving EAA enriched high-protein EN presented 18% higher serum free IGF-1 levels following 3 days of nutrition support and 22% higher after 5 days. These changes were consistent with the concomitant elevation in serum insulin and reduction in corticosterone levels. In addition, phosphorylations of downstream anabolic signaling effectors - including protein kinase B, mTOR, and ribosomal protein S6 kinase1 - increased significantly in rats receiving EAA enriched high-protein EN.

Conclusion/Significance

Our findings firstly demonstrate the beneficial effect of EAA enriched high-protein EN on the metabolic modulation of skeletal muscle protein anabolism by regulating the IGF-1 system and downstream anabolic signaling transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号