首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphorylation is a key regulatory mechanism of cellular signalling processes. The analysis of phosphorylated proteins and the characterisation of phosphorylation sites under different biological conditions are some of the most challenging tasks in current proteomics research. Reduction of the sample complexity is one major step for the analysis of low-abundance kinase substrates, which can be achieved by various subcellular fractionation techniques. One strategy is the enrichment of phosphorylated proteins or peptides by immunoprecipitation or chromatography, e.g. immobilised metal affinity chromatography, prior to analysis. 2-DE gels are powerful tools for the analysis of phosphoproteins when combined with new multiplexing techniques like DIGE, phosphospecific stains, autoradiography or immunoblotting. In addition, several gel-free methods combining chromatography with highly sensitive MS have been successfully applied for the analysis of complex phosphoproteomes. Recently developed approaches like KESTREL or 'chemical genetics' and also protein microarrays offer new possibilities for the identification of specific kinase targets. This review summarises various strategies for the analyses of phosphoproteins with a special focus on the identification of novel kinase substrates.  相似文献   

2.
磷蛋白组的研究技术及其进展   总被引:2,自引:0,他引:2  
真核细胞中蛋白质磷酸化是一个重要事件。真核细胞利用可逆的蛋白磷酸化来控制许多细胞过程包括信号转换、基因表达、细胞周期等。磷蛋白组的研究涉及磷蛋白的分离和鉴定 ,磷酸化残基定位和定量分析。由于蛋白质磷酸化是一个动态过程 ,在细胞中磷蛋白含量低 ,磷酸化位点可变 ,且磷酸肽的质谱信号常常会受到抑制 ,所以磷蛋白的分析存在更多的困难。本文介绍了国内外在磷酸蛋白的分离鉴定及定量分析方面的研究技术以及进展情况。目前 ,质谱仍然是核心的鉴定技术 ,寻找更好富集方法是最大的挑战。定量蛋白组学是对蛋白质的差异表达进行精确的定量分析。目前还不存在一种独立的方法可以完成磷蛋白的分离、鉴定 ,以及磷酸位点的定位和定量分析。随着样品分离技术和相关仪器的发展 ,磷酸蛋白快速、准确、全面分析鉴定将能够实现。  相似文献   

3.
Analysis of protein phosphorylation on a proteome-scale   总被引:1,自引:0,他引:1  
Collins MO  Yu L  Choudhary JS 《Proteomics》2007,7(16):2751-2768
Phosphorylation, the most intensively studied and common PTM on proteins, is a complex biological phenomenon. Its complexity manifests itself in the large numbers of proteins that attach it, remove it and recognise it as a protein code. Since the first report of protein phosphorylation on vitellin 100 years ago, a wide variety of biochemical and analytical chemical approaches have been developed to enrich and detect protein phosphorylation. The last 5 years have witnessed a renaissance in methodologies capable of characterising protein phosphorylation on a proteome-scale. These technological advances have allowed identification of hundreds to thousands of phosphorylation sites in a proteome and have resulted in a profound paradigm shift. For the first time, using quantitative MS, the topology and significance of global phosphorylation networks may be investigated, marking a new era of cell signalling research. This review addresses recent technological advances in the purification of phosphorylated proteins and peptides and current MS-based strategies used to qualitatively and quantitatively probe these enriched phosphoproteomes. In addition, we review the application of complementary array-based technologies to derive signalling networks from kinase-substrate interactions and discuss future challenges in the field.  相似文献   

4.
Protein phosphorylation affects most, if not all, cellular activities in eukaryotes and is essential for cell proliferation and development. An estimated 30% of cellular proteins are phosphorylated, representing the phosphoproteome, and phosphorylation can alter a protein's function, activity, localization and stability. Recent studies for large-scale identification of phosphosites using mass spectrometry are revealing the components of the phosphoproteome. The development of new tools, such as kinase assays using modified kinases or protein microarrays, enables rapid kinase substrate identification. The dynamics of specific phosphorylation events can now be monitored using mass spectrometry, single-cell analysis of flow cytometry, or fluorescent reporters. Together, these techniques are beginning to elucidate cellular processes and pathways regulated by phosphorylation, in addition to global regulatory networks.  相似文献   

5.
In Mycobacterium tuberculosis (Mtb), regulatory phosphorylation of proteins at serine and/or threonine residues by serine/threonine protein kinases (STPKs) is an emerging theme connected with the involvement of these enzymes in virulence mechanisms. The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to identify the corresponding interaction networks. Detection of phosphorylated proteins as well as assignment of the phosphorylated sites in STPKs is a major challenge in proteomics since some of these enzymes might be interesting therapeutical targets. Using different strategies to identify phosphorylated residues, we report, in the present work, MS studies of the entire intracellular regions of recombinant protein kinases PknA, PknD, PknE, and PknH from Mtb. The on-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, seven and nine phosphorylated serine and/or threonine residues were identified as phosphorylation sites in the recombinant intracellular regions of PknA and PknH, respectively. The same technique led also to the identification of seven phosphorylation sites in each of the two recombinant kinases, PknD and PknE.  相似文献   

6.
Overexpression of the ErbB2 receptor tyrosine kinase is common in human cancers and is associated with an increased level of metastasis. To better understand the cellular signaling networks activated by ErbB2, a phosphoproteomic analysis of tyrosine-phosphorylated proteins was carried out in ErbB2-overexpressing breast and ovarian cancer cell lines. A total of 153 phosphorylation sites were assigned on 78 proteins. Treatment of cells with Herceptin, a monoclonal antibody that inhibits ErbB2 activity, significantly reduced the number of detectable protein phosphorylation sites, suggesting that many of these proteins participate in ErbB2-driven cell signaling. Of the 71 proteins that were differentially phosphorylated, only 13 were previously reported to directly associate with ErbB2. The differentially phosphorylated proteins included kinases, adaptor/docking proteins, proteins involved in cell proliferation and migration, and several uncharacterized RNA binding proteins. Selective depletion of some of these proteins, including RNA binding proteins SRRM2, SFRS1, SFRS9, and SFRS10, by siRNAs reduced the rate of migration of ErbB2-overexpressing ovarian cancer cells.  相似文献   

7.
Protein phosphorylation is a key mechanism of cell regulation in normal and cancer cells. Various new cancer drugs and drug candidates are aimed at protein kinase targets. However, selecting patients likely to respond to these treatments, even among individuals with tumors expressing validated kinase targets remains a major challenge. There exists a need for biomarkers to facilitate the monitoring of modulation of drug-targeted kinase pathways. Phospho-proteomics involves the enrichment of phosphorylated proteins from tissue, and the application of technologies such as mass spectrometry (MS) for the identification and quantification of protein phosphorylation sites. It has potential to provide pharmacodynamic readouts of disease states and cellular drug responses in tumor samples, but technical hurdles and bioinformatics challenges will need to be addressed.  相似文献   

8.
In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling networks also requires quantitation of these phosphorylation events. In this article, we outline several methods for enrichment of phosphorylated proteins and peptides and discuss various options for their identification and quantitation with special emphasis on mass spectrometry-based techniques.  相似文献   

9.
Posttranslational regulation of proteins via protein phosphorylation is one of the major means of protein regulation. Phosphorylation is a very rapid and reversible method of changing the function of proteins. Detection of phosphorylated proteins and the identification of phosphorylation sites are necessary to molecularly link specific phosphorylated events with change in phosphoprotein function. Mass Spectrometry (MS) has become the methodology of choice for phosphosite identification. Here we review current approaches including sample separation and enrichment techniques (SDS-PAGE, immunoprecipitation, metal-assisted enrichment, strong cation exchange, dendrimer capture), quantitative MS analysis methods (SILAC, iTRAQ, AQUA), and the application of recently developed methods including electron transfer dissociation ionization and “top-down” proteomics to phosphoprotein analysis.  相似文献   

10.
Posttranslational regulation of proteins via protein phosphorylation is one of the major means of protein regulation. Phosphorylation is a very rapid and reversible method of changing the function of proteins. Detection of phosphorylated proteins and the identification of phosphorylation sites are necessary to molecularly link specific phosphorylated events with change in phosphoprotein function. Mass Spectrometry (MS) has become the methodology of choice for phosphosite identification. Here we review current approaches including sample separation and enrichment techniques (SDS-PAGE, immunoprecipitation, metal-assisted enrichment, strong cation exchange, dendrimer capture), quantitative MS analysis methods (SILAC, iTRAQ, AQUA), and the application of recently developed methods including electron transfer dissociation ionization and "top-down" proteomics to phosphoprotein analysis.  相似文献   

11.
Balanced activity of protein tyrosine kinases and phosphatases (PTPs) controls tyrosine phosphorylation levels and, consequently, is needed to prevent pathologies like cancer. Phosphatase activity is tightly regulated in space and time. Thus, in order to understand how phospho-tyrosine signalling is regulated, the intracellular dynamics of PTPs should be investigated. Here, we have studied the intracellular dynamics of PTPD1, a FERM (four-point-one, ezrin, radixin, moesin) domain-containing PTP that is over expressed in cancer cells and potentiates EGFR signalling. Whereas PTPD1 was excluded from E-cadherin rich cell-cell adhesions in epithelial cell monolayers, it diffused from the cytoplasm to those membranes in contact with the extracellular medium. Localisation of PTPD1 at the plasma membrane was mediated by its FERM domain and enabled the formation of EGFR/PTPD1-containing signalling complexes that pre-existed at the plasma membrane before EGF stimulation. PTPD1 and EGFR transiently co-localised at EGF stimulation sites until the formation of macropinosomes containing active species of EGFR. Interference of PTPD1 expression caused a decrease in EGFR phosphorylated species at the periphery of the cell. Presented data suggest that the transient formation of dynamic PTPD1/EGFR signalling complexes strengthens EGF signalling by promoting the spatial propagation of EGFR phosphorylated species.  相似文献   

12.
Protein phosphorylation regulates many cellular processes by causing changes in protein conformation. The prolyl isomerase PIN1 has been identified as a regulator of phosphorylation signalling that catalyses the conversion of specific phosphorylated motifs between the two completely distinct conformations in a subset of proteins. PIN1 regulates diverse cellular processes, including growth-signal responses, cell-cycle progression, cellular stress responses, neuronal function and immune responses. In line with the diverse physiological roles of PIN1, it has also been linked to several diseases that include cancer, Alzheimer's disease and asthma, and thus it might represent a novel therapeutic target.  相似文献   

13.
Pinning down proline-directed phosphorylation signaling   总被引:13,自引:0,他引:13  
The reversible phosphorylation of proteins on serine or threonine residues preceding proline (Ser/Thr-Pro) is a major cellular signaling mechanism. Although it is proposed that phosphorylation regulates the function of proteins by inducing a conformational change, there are few clues about the actual conformational changes and their importance. Recent identification of the novel prolyl isomerase Pin1 that specifically isomerizes only the phosphorylated Ser/Thr-Pro bonds in certain proteins led us to propose a new signaling mechanism, whereby prolyl isomerization catalytically induces conformational changes in proteins following phosphorylation to regulate protein function. Emerging data indicate that such conformational changes have profound effects on catalytic activity, dephosphorylation, protein-protein interactions, subcellular location and/or turnover. Furthermore, this post-phosphorylation mechanism might play an important role in cell growth control and diseases such as cancer and Alzheimer's.  相似文献   

14.
A major goal of the Alliance for Cellular Signaling is to elaborate the components of signal transduction networks in model cell systems, including murine B lymphocytes. Due to the importance of protein phosphorylation in many aspects of cell signaling, the initial efforts have focused on the identification of phosphorylated proteins. In order to identify serine- and threonine-phosphorylated proteins on a proteome-wide basis, WEHI-231 cells were treated with calyculin A, a serine/threonine phosphatase inhibitor, to induce high levels of protein phosphorylation. Proteins were extracted from whole-cell lysates and digested with trypsin. Phosphorylated peptides were then enriched using immobilized metal affinity chromatography and identified by liquid chromatography-tandem mass spectrometry. A total of 107 proteins and 193 phosphorylation sites were identified using these methods. Forty-two of these proteins have been reported to be phosphorylated, but only some of them have been detected in B cells. Fifty-four of the identified proteins were not previously known to be phosphorylated. The remaining 11 phosphoproteins have previously only been characterized as novel cDNA or genomic sequences. Many of the identified proteins were phosphorylated at multiple sites. The proteins identified in this study significantly expand the repertoire of proteins known to be phosphorylated in B cells. The number of newly identified phosphoproteins indicates that B cell signaling pathways utilizing protein phosphorylation are likely to be more complex than previously appreciated.  相似文献   

15.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.  相似文献   

16.
Using phosphoproteomics to reveal signalling dynamics in plants   总被引:1,自引:0,他引:1  
To ensure appropriate responses to stimuli, organisms have evolved signalling networks that rely on post-translational modifications of their components. Among these, protein phosphorylation has a prominent role and much research in plants has focused on protein kinases and phosphatases, which, respectively, catalyse phosphorylation and dephosphorylation of specific substrates. Technical limitations, however, have hampered the identification of these substrates. As reviewed here, novel mass spectrometry-based techniques have enabled the large-scale mapping of in vivo phosphorylation sites. Alternatively, methods based on peptide and protein microarrays have revealed protein kinase activities in cell extracts, in addition to kinase substrates. A combined phosphoproteomic approach of mass spectrometry and microarray technology could enhance the construction of dynamic plant signalling networks that underlie plant biology.  相似文献   

17.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.  相似文献   

18.
Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in various cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its application for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed (16)O/ (18)O labeling plus (16)O/ (18)O-methanol esterification for quantitation, a macro-immobilized metal-ion affinity chromatography trap for phosphopeptide enrichment, and LC-MS/MS analysis. LC separation and MS/MS are followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer. A variety of phosphorylated proteins were identified and quantified including receptors, kinases, proteins associated with small GTPases, and cytoskeleton proteins. A number of hypothetical proteins were also identified as differentially expressed followed by LPA stimulation, and we have shown evidence of pseudopodia subcellular localization of one of these candidate proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with LPA gradient sensing and cell chemotaxis.  相似文献   

19.
Since the discovery of protein phosphorylation as an important modulator of many cellular processes, the involvement of protein kinases in diseases, such as cancer, diabetes, cardiovascular diseases, and central nervous system pathologies, has been extensively documented. Our understanding of many disease pathologies at the molecular level, therefore, requires the comprehensive identification of substrates targeted by protein kinases. In this review, we focus on recent techniques for kinase substrate identification in high throughput, in particular on genetic and proteomic approaches. Each method with its inherent advantages and limitations is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号