首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The modified nucleoside 1-methyladenosine (m1A) is found in the T-loop of many tRNAs from organisms belonging to the three domains of life (Eukaryota, Bacteria, Archaea). In the T-loop of eukaryotic and bacterial tRNAs, m1A is present at position 58, whereas in archaeal tRNAs it is present at position(s) 58 and/or 57, m1A57 being the obligatory intermediate in the biosynthesis of 1-methylinosine (m1I57). In yeast, the formation of m1A58 is catalysed by the essential tRNA (m1A58) methyltransferase (MTase), a tetrameric enzyme that is composed of two types of subunits (Gcd14p and Gcd10p), whereas in the bacterium Thermus thermophilus the enzyme is a homotetramer of the TrmI polypeptide. Here, we report that the TrmI enzyme from the archaeon Pyrococcus abyssi is also a homotetramer. However, unlike the bacterial site-specific TrmI MTase, the P.abyssi enzyme is region-specific and catalyses the formation of m1A at two adjacent positions (57 and 58) in the T-loop of certain tRNAs. The stabilisation of P.abyssi TrmI at extreme temperatures involves intersubunit disulphide bridges that reinforce the tetrameric oligomerisation, as revealed by biochemical and crystallographic evidences. The origin and evolution of m1A MTases is discussed in the context of different hypotheses of the tree of life.  相似文献   

2.
The N 1-methyladenosine residue at position 58 of tRNA is found in the three domains of life, and contributes to the stability of the three-dimensional L-shaped tRNA structure. In thermophilic bacteria, this modification is important for thermal adaptation, and is catalyzed by the tRNA m1A58 methyltransferase TrmI, using S-adenosyl-l-methionine (AdoMet) as the methyl donor. We present the 2.2 Å crystal structure of TrmI from the extremely thermophilic bacterium Aquifex aeolicus, in complex with AdoMet. There are four molecules per asymmetric unit, and they form a tetramer. Based on a comparison of the AdoMet binding mode of A. aeolicus TrmI to those of the Thermus thermophilus and Pyrococcus abyssi TrmIs, we discuss their similarities and differences. Although the binding modes to the N6 amino group of the adenine moiety of AdoMet are similar, using the side chains of acidic residues as well as hydrogen bonds, the positions of the amino acid residues involved in binding are diverse among the TrmIs from A. aeolicus, T. thermophilus, and P. abyssi.  相似文献   

3.
The molecular mechanisms that evolution has been employing to adapt to environmental temperatures are poorly understood. To gain some further insight into this subject we solved the crystal structure of triosephosphate isomerase (TIM) from the hyperthermophilic bacterium Thermotoga maritima (TmTIM). The enzyme is a tetramer, assembled as a dimer of dimers, suggesting that the tetrameric wild-type phosphoglycerate kinase PGK-TIM fusion protein consists of a core of two TIM dimers covalently linked to 4 PGK units. The crystal structure of TmTIM represents the most thermostable TIM presently known in its 3D-structure. It adds to a series of nine known TIM structures from a wide variety of organisms, spanning the range from psychrophiles to hyperthermophiles. Several properties believed to be involved in the adaptation to different temperatures were calculated and compared for all ten structures. No sequence preferences, correlated with thermal stability, were apparent from the amino acid composition or from the analysis of the loops and secondary structure elements of the ten TIMs. A common feature for both psychrophilic and T. maritima TIM is the large number of salt bridges compared with the number found in mesophilic TIMs. In the two thermophilic TIMs, the highest amount of accessible hydrophobic surface is buried during the folding and assembly process.  相似文献   

4.

Background  

A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures.  相似文献   

5.
The three-dimensional structure of four malate dehydrogenases (MDH) from thermophilic and mesophilic phototropic bacteria have been determined by X-ray crystallography and the corresponding structures compared. In contrast to the dimeric quaternary structure of most MDHs, these MDHs are tetramers and are structurally related to tetrameric malate dehydrogenases from Archaea and to lactate dehydrogenases. The tetramers are dimers of dimers, where the structures of each subunit and the dimers are similar to the dimeric malate dehydrogenases. The difference in optimal growth temperature of the corresponding organisms is relatively small, ranging from 32 to 55 degrees C. Nevertheless, on the basis of the four crystal structures, a number of factors that are likely to contribute to the relative thermostability in the present series have been identified. It appears from the results obtained, that the difference in thermostability between MDH from the mesophilic Chlorobium vibrioforme on one hand and from the moderate thermophile Chlorobium tepidum on the other hand is mainly due to the presence of polar residues that form additional hydrogen bonds within each subunit. Furthermore, for the even more thermostable Chloroflexus aurantiacus MDH, the use of charged residues to form additional ionic interactions across the dimer-dimer interface is favored. This enzyme has a favorable intercalation of His-Trp as well as additional aromatic contacts at the monomer-monomer interface in each dimer. A structural alignment of tetrameric and dimeric prokaryotic MDHs reveal that structural elements that differ among dimeric and tetrameric MDHs are located in a few loop regions.  相似文献   

6.
Methyltransferases from the m1A58 tRNA methyltransferase (TrmI) family catalyze the S-adenosyl-l-methionine-dependent N1-methylation of tRNA adenosine 58. The crystal structure of Thermus thermophilus TrmI, in complex with S-adenosyl-l-homocysteine, was determined at 1.7 Å resolution. This structure is closely related to that of Mycobacterium tuberculosis TrmI, and their comparison enabled us to enlighten two grooves in the TrmI structure that are large enough and electrostatically compatible to accommodate one tRNA per face of TrmI tetramer. We have then conducted a biophysical study based on electrospray ionization mass spectrometry, site-directed mutagenesis, and molecular docking. First, we confirmed the tetrameric oligomerization state of TrmI, and we showed that this protein remains tetrameric upon tRNA binding, with formation of complexes involving one to two molecules of tRNA per TrmI tetramer. Second, three key residues for the methylation reaction were identified: the universally conserved D170 and two conserved aromatic residues Y78 and Y194. We then used molecular docking to position a N9-methyladenine in the active site of TrmI. The N9-methyladenine snugly fits into the catalytic cleft, where the side chain of D170 acts as a bidentate ligand binding the amino moiety of S-adenosyl-l-methionine and the exocyclic amino group of the adenosine. Y194 interacts with the N9-methyladenine ring, whereas Y78 can stabilize the sugar ring. From our results, we propose that the conserved residues that form the catalytic cavity (D170, Y78, and Y194) are essential for fashioning an optimized shape of the catalytic pocket.  相似文献   

7.
Lam SY  Yeung RC  Yu TH  Sze KH  Wong KB 《PLoS biology》2011,9(3):e1001027

Background

Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity.

Methods and Findings

Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy.

Conclusions

Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.  相似文献   

8.
Enzymes from thermophilic and, particularly, from hyperthermophilic organisms are surprisingly stable. Understanding the molecular origin of protein thermostability and thermoactivity attracted the interest of many scientists both for the perspective comprehension of the principles of protein structure and for the possible biotechnological applications through protein engineering. Comparative studies at sequence and structure levels were aimed at detecting significant differences of structural parameters related to protein stability between thermophilic and hyperthermophilic proteins and their mesophilic homologs. In a recent work, we focused attention on structural adaptation occurring at the subunit interface of oligomeric hyper- and thermostable enzymes. A set of structural and chemico-physical parameters were compared to those observed at the corresponding interfaces of homologous mesophilic proteins. Among the most significant variations, a general increase of interface apolarity and packing density in hyperthermophilic enzymes were found. This work was therefore aimed at elucidating whether the increased packing observed is reached also through the reduction of interface cavity number and volume. The results indicate that number of cavities tends to be relatively constant while cavity volume tends to decrease in the hyperthermophilic interfaces. The cavity apolarity increases in thermophiles but, apparently, not in hyperthermophiles. Moreover, interface hot spot residues of the mesophilic interfaces tend to be conserved in the extremophilic counterparts.  相似文献   

9.
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of >80°C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.  相似文献   

10.
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.  相似文献   

11.
A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex   总被引:1,自引:0,他引:1  

Background

Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database.

Results

Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion.

Conclusions

Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.  相似文献   

12.

Background  

Thermostable enzymes from thermophilic microorganisms are playing more and more important roles in molecular biology R&D and industrial applications. However, over-production of recombinant soluble proteins from thermophilic microorganisms in mesophilic hosts (e.g. E. coli) remains challenging sometimes.  相似文献   

13.
In most organisms, the widely conserved 1-methyl-adenosine58 (m1A58) tRNA modification is catalyzed by an S-adenosyl-L-methionine (SAM)-dependent, site-specific enzyme TrmI. In archaea, TrmI also methylates the adjacent adenine 57, m1A57 being an obligatory intermediate of 1-methyl-inosine57 formation. To study this multi-site specificity, we used three oligoribonucleotide substrates of Pyrococcus abyssi TrmI (PabTrmI) containing a fluorescent 2-aminopurine (2-AP) at the two target positions and followed the RNA binding kinetics and methylation reactions by stopped-flow and mass spectrometry. PabTrmI did not modify 2-AP but methylated the adjacent target adenine. 2-AP seriously impaired the methylation of A57 but not A58, confirming that PabTrmI methylates efficiently the first adenine of the A57A58A59 sequence. PabTrmI binding provoked a rapid increase of fluorescence, attributed to base unstacking in the environment of 2-AP. Then, a slow decrease was observed only with 2-AP at position 57 and SAM, suggesting that m1A58 formation triggers RNA release. A model of the protein–tRNA complex shows both target adenines in proximity of SAM and emphasizes no major tRNA conformational change except base flipping during the reaction. The solvent accessibility of the SAM pocket is not affected by the tRNA, thereby enabling S-adenosyl-L-homocysteine to be replaced by SAM without prior release of monomethylated tRNA.  相似文献   

14.
Enzymes from thermophilic and hyper‐thermophilic organisms have an intrinsic high stability. Understanding the mechanisms behind their high stability will be important knowledge for the engineering of novel enzymes with high stability. Lysine methylation of proteins is prevalent in Sulfolobus, a genus of hyperthermophilic and acidophilic archaea. Both unspecific and temperature dependent lysine methylations are seen, but the significance of this post‐translational modification has not been investigated. Here, we test the effect of eliminating in vivo lysine methylation on the stability of an esterase (EstA). The enzyme was purified from the native host S. islandicus as well as expressed as a recombinant protein in E. coli, a mesophilic host that does not code for any machinery for in vivo lysine methylation. We find that lysine mono methylation indeed has a positive effect on the stability of EstA, but the effect is small. The effect of the lysine methylation on protein stability is secondary to that of protein expression in E. coli, as the E. coli recombinant enzyme is compromised both on stability and activity. We conclude that these differences are not attributed to any covalent difference between the protein expressed in hyperthermophilic versus mesophilic hosts.  相似文献   

15.
16.

Objectives

To assess the effect of one-step temperature increase, from 35 to 55 °C, on the methane production of a mesophilic granular sludge (MGS) treating wine vinasses and the effluent of a hydrogenogenic upflow anaerobic sludge blanket (UASB) reactor.

Results

One-step temperature increase from mesophilic to thermophilic conditions improved methane production regardless of the substrate tested. The biomethane potentials obtained under thermophilic conditions were 1.8–2.9 times higher than those obtained under mesophilic conditions. The MGS also performed better than an acclimated thermophilic digestate, producing 2.2–2.5 times more methane than the digestate under thermophilic conditions. Increasing the temperature from 35 to 55 °C also improved the methane production rate of the MGS (up to 9.4 times faster) and reduced the lag time (up to 1.9 times). Although the temperature increase mediated a decrease in the size of the sludge granules, no negative effects on the performance of the MGS was observed under thermophilic conditions.

Conclusions

More methane is obtained from real agroindustrial effluents at thermophilic conditions than under mesophilic conditions. One-step temperature increase (instead of progressive sequential increases) can be used to implement the thermophilic anaerobic digestion processes with MGS.
  相似文献   

17.
18.
N1-methyladenosine (m1A) is found at position 58 in the T-loop of many tRNAs. In yeast, the formation of this modified nucleoside is catalyzed by the essential tRNA (m1A58) methyltransferase, a tetrameric enzyme that is composed of two types of subunits (Gcd14p and Gcd10p). In this report we describe the cloning, expression and characterization of a Gcd14p homolog from the hyperthermophilic bacterium Thermus thermophilus. The purified recombinant enzyme behaves as a homotetramer of ~150 kDa by gel filtration and catalyzes the site- specific formation of m1A at position 58 of the T-loop of tRNA in the absence of any other complementary protein. S-adenosylmethionine is used as donor of the methyl group. Thus, we propose to name the bacterial enzyme TrmI and accordingly its structural gene trmI. These results provide a key evolutionary link between the functionally characterized two-component eukaryotic enzyme and the recently described crystal structure of an uncharacterized, putative homotetrameric methyltransferase Rv2118c from Mycobacterium tuberculosis. Interest ingly, inactivation of the T.thermophilus trmI gene results in a thermosensitive phenotype (growth defect at 80°C), which suggests a role of the N1-methylation of tRNA adenosine-58 in adaptation of life to extreme temperatures.  相似文献   

19.
Aldehyde dehydrogenases are isolated as dimers or tetramers but have essentially identical structures. The homotetramer (ALDH1 or ALDH2) is a dimer of dimers (A-B + C-D). In the tetrameric enzyme, Ser500 from subunit "D" interacts with Arg84, a conserved residue, from subunit "A". In the dimeric ALDH3 form, the interaction cannot exist. It has been proposed that the formation of the tetramer is prevented by the presence of a C-terminal tail in ALDH3 that is not present in ALDH1 or 2. To understand the forces that maintain the tetramer, deletion of the tail in ALDH3, addition of different tails in ALDH1, and mutations of different residues located in the dimer-dimer interface were made. Gel filtration of the recombinantly expressed enzymes demonstrated that no change in their oligomerization occurred. Urea denaturation showed a diminution to the stability of the ALDH1 mutants. The K(m) for propionaldehyde was similar to that of the wild-type enzyme, but the K(m) for NAD was altered. A double mutant of D80G and S82A produced an enzyme with the ability to form dimers and tetramers in a protein-concentration-dependent manner. Though stable, this dimeric form was inactive. The tetramer exhibited 10% activity compared with the wild type. Sequence alignment demonstrated that the hydrophobic surface area is increased in the tetrameric enzymes. The hydrophobic surface seems to be the main force that drives the formation of tetramers. The results indicated that residues 80 and 82 are involved in maintaining the tetramer after its assembly but the C-terminal extension contributes to the overall stability of the assembled protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号