共查询到20条相似文献,搜索用时 0 毫秒
1.
Axin is encoded by the fused locus in mice and is required for normal vertebrate axis formation. It has recently been shown that axin associates with the adenomatous polyposis coli gene product (APC), β-catenin and glycogen synthase kinase-3 (GSK-3) in a complex that appears to regulate the level of cytoplasmic β-catenin. We have identified the Xenopus homologue of axin through its interaction with GSK-3β. Xenopus axin (Xaxin) is expressed maternally and throughout early development with a low level of ubiquitous expression. Xaxin also shows remarkably high expression in the anterior mesencephalon adjacent to the forebrain–midbrain boundary. 相似文献
2.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules. 相似文献
3.
Sutton LP Honardoust D Mouyal J Rajakumar N Rushlow WJ 《Journal of neurochemistry》2007,102(1):153-169
Protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and members of the Wnt signal transduction pathway were recently found to be altered in schizophrenia and targeted by antipsychotic drugs. In the current study, selected Wnt signalling proteins were investigated to determine if they are altered by the antipsychotics clozapine or haloperidol in the rat prefrontal cortex. Pheochromocytoma (PC12) and neuroblastoma (SH-SY5Y) cells were also used to elucidate how antipsychotics generated the pattern of changes observed in vivo . Western blotting (WB) revealed that treatment with haloperidol or clozapine caused an up-regulation of Wnt-5a, dishevelled-3, Axin, total and phosphorylated GSK-3 and β-catenin protein levels. Treatment of PC12 and SH-SY5Y cells with a variety of pharmacological agents as well as the over-expression of several Wnt related proteins failed to mimic the pattern observed in vivo following antipsychotic treatment. However, the over-expression of dishevelled-3 nearly perfectly duplicated the changes observed in vivo . Immunoprecipitations (IP) conducted using protein isolated from the rat prefrontal cortex indicated that dishevelled-3 is associated with the D2 dopamine receptor thereby suggesting that antipsychotics may act on dishevelled-3 via D2 dopamine receptors to initiate a cascade of downstream changes involving Axin, GSK-3 and β-catenin that may help to alleviate psychosis in schizophrenic patients. 相似文献
4.
Neuropathological hallmarks of Alzheimer's disease are extracellular senile plaques and intracellular neurofibrillary lesions. The neurofibrillary lesions mainly consist of the hyperphosphorylated microtubule-associated protein Tau predominantly expressed in the axon of CNS neurons. Hyperphosphorylation of Tau negatively affects its binding to tubulin and decreases the capacity to promote microtubule assembly. Among a number of proline-directed kinases capable of phosphorylating paired helical filament-Tau, glycogen synthase kinase 3beta (GSK3beta) was first identified as a Tau protein kinase I and has been demonstrated to phosphorylate Tau both in vivo and in vitro. However, the phosphorylation mechanism of Tau by GSK3beta remained unclear. In this study, we show that the T231 is the primary phosphorylation site for GSK3beta and the Tau227-237 (AVVRTPPKSPS) derived from Tau containing T231P232 motif is identified as the GSK3beta binding site with high affinity of a Kd value 0.82 +/- 0.16 mumol/L. Our results suggest that direct binding and phosphorylation of T231P232 motif by GSK3beta induces conformational change of Tau and consequentially alters the inhibitory activity of its N-terminus that allows the phosphorylation of C-terminus of Tau by GSK3beta. Furthermore, hyperphosphorylation reduces Tau's ability to promote tubulin assembly and to form bundles in N18 cells. T231A mutant completely abolishes Tau phosphorylation by GSK3beta and retains the ability to promote tubulin polymerization and bundle formation. Taken together, these results suggest that phosphorylation of T231 by GSK3beta may play an important role in Tau's hyperphosphorylation and functional regulation. 相似文献
5.
Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology 总被引:11,自引:0,他引:11
Griffin RJ Moloney A Kelliher M Johnston JA Ravid R Dockery P O'Connor R O'Neill C 《Journal of neurochemistry》2005,93(1):105-117
Studies suggest that activation of phosphoinositide 3-kinase-Akt may protect against neuronal cell death in Alzheimer's disease (AD). Here, however, we provide evidence of increased Akt activation, and hyperphosphorylation of critical Akt substrates in AD brain, which link to AD pathogenesis, suggesting that treatments aiming to activate the pathway in AD need to be considered carefully. A different distribution of Akt and phospho-Akt was detected in AD temporal cortex neurons compared with control neurons, with increased levels of active phosphorylated-Akt in particulate fractions, and significant decreases in Akt levels in AD cytosolic fractions, causing increased activation of Akt (phosphorylated-Akt/total Akt ratio) in AD. In concordance, significant increases in the levels of phosphorylation of total Akt substrates, including: GSK3beta(Ser9), tau(Ser214), mTOR(Ser2448), and decreased levels of the Akt target, p27(kip1), were found in AD temporal cortex compared with controls. A significant loss and altered distribution of the major negative regulator of Akt, PTEN (phosphatase and tensin homologue deleted on chromosome 10), was also detected in AD neurons. Loss of phosphorylated-Akt and PTEN-containing neurons were found in hippocampal CA1 at end stages of AD. Taken together, these results support a potential role for aberrant control of Akt and PTEN signalling in AD. 相似文献
6.
7.
CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium 总被引:1,自引:0,他引:1
The regulatory influences of glycogen synthase kinase-3 beta (GSK3 beta) and lithium on the activity of cyclic AMP response element binding protein (CREB) were examined in human neuroblastoma SH-SY5Y cells. Activation of Akt (protein kinase B) with serum-increased phospho-serine-9-GSK3 beta (the inactive form of the enzyme), inhibited GSK3 beta activity, and increased CREB DNA binding activity. Inhibition of GSK3 beta by another paradigm, treatment with the selective inhibitor lithium, also increased CREB DNA binding activity. The inhibitory regulation of CREB DNA binding activity by GSK3 beta also was evident in differentiated SH-SY5Y cells, indicating that this regulatory interaction is maintained in non-proliferating cells. These results demonstrate that inhibition of GSK3 beta by serine-9 phosphorylation or directly by lithium increases CREB activation. Conversely, overexpression of active GSK3 beta to 3.5-fold the normal levels completely blocked increases in CREB DNA binding activity induced by epidermal growth factor, insulin-like growth factor-1, forskolin, and cyclic AMP. The inhibitory effects due to overexpressed GSK3 beta were reversed by treatment with lithium and with another GSK 3beta inhibitor, sodium valproate. Overall, these results demonstrate that GSK3 beta inhibits, and lithium enhances, CREB activation. 相似文献
8.
Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. 总被引:10,自引:0,他引:10 下载免费PDF全文
F Fagotto E h Jho L Zeng T Kurth T Joos C Kaufmann F Costantini 《The Journal of cell biology》1999,145(4):741-756
Axin was identified as a regulator of embryonic axis induction in vertebrates that inhibits the Wnt signal transduction pathway. Epistasis experiments in frog embryos indicated that Axin functioned downstream of glycogen synthase kinase 3beta (GSK3beta) and upstream of beta-catenin, and subsequent studies showed that Axin is part of a complex including these two proteins and adenomatous polyposis coli (APC). Here, we examine the role of different Axin domains in the effects on axis formation and beta-catenin levels. We find that the regulators of G-protein signaling domain (major APC-binding site) and GSK3beta-binding site are required, whereas the COOH-terminal sequences, including a protein phosphatase 2A binding site and the DIX domain, are not essential. Some forms of Axin lacking the beta-catenin binding site can still interact indirectly with beta-catenin and regulate beta-catenin levels and axis formation. Thus in normal embryonic cells, interaction with APC and GSK3beta is critical for the ability of Axin to regulate signaling via beta-catenin. Myc-tagged Axin is localized in a characteristic pattern of intracellular spots as well as at the plasma membrane. NH2-terminal sequences were required for targeting to either of these sites, whereas COOH-terminal sequences increased localization at the spots. Coexpression of hemagglutinin-tagged Dishevelled (Dsh) revealed strong colocalization with Axin, suggesting that Dsh can interact with the Axin/APC/GSK3/beta-catenin complex, and may thus modulate its activity. 相似文献
9.
Apolipoprotein E and beta-amyloid (1-42) regulation of glycogen synthase kinase-3beta 总被引:3,自引:0,他引:3
Cedazo-Mínguez A Popescu BO Blanco-Millán JM Akterin S Pei JJ Winblad B Cowburn RF 《Journal of neurochemistry》2003,87(5):1152-1164
Glycogen synthase kinase-3beta (GSK-3beta) is implicated in regulating apoptosis and tau protein hyperphosphorylation in Alzheimer's disease (AD). We investigated the effects of two key AD molecules, namely apoE (E3 and E4 isoforms) and beta-amyloid (Abeta) 1-42 on GSK-3beta and its major upstream regulators, intracellular calcium and protein kinases C and B (PKC and PKB) in human SH-SY5Y neuroblastoma cells. ApoE3 induced a mild, transient, Ca2+-independent and early activation of GSK-3beta. ApoE4 effects were biphasic, with an early strong GSK-3beta activation that was partially dependent on extracellular Ca2+, followed by a GSK-3beta inactivation. ApoE4 also activated PKC-alpha and PKB possibly giving the subsequent GSK-3beta inhibition. Abeta(1-42) effects were also biphasic with a strong activation dependent partially on extracellular Ca2+ followed by an inactivation. Abeta(1-42) induced an early and potent activation of PKC-alpha and a late decrease of PKB activity. ApoE4 and Abeta(1-42) were more toxic than apoE3 as shown by MTT reduction assays and generation of activated caspase-3. ApoE4 and Abeta(1-42)-induced early activation of GSK-3beta could lead to apoptosis and tau hyperphosphorylation. A late inhibition of GSK-3beta through activation of upstream kinases likely compensates the effects of apoE4 and Abeta(1-42) on GSK-3beta, the unbalanced regulation of which may contribute to AD pathology. 相似文献
10.
Bongers G Sallmen T Passani MB Mariottini C Wendelin D Lozada A Marle Av Navis M Blandina P Bakker RA Panula P Leurs R 《Journal of neurochemistry》2007,103(1):248-258
Drugs targeting the histamine H(3) receptor (H(3)R) are suggested to be beneficial for the treatment of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The H(3)R activates G(i/o)-proteins to inhibit adenylyl cyclase activity and modulates phospholipase A(2) and MAPK activity. Herein we show that, in transfected SK-N-MC cells, the H(3)R modulates the activity of the Akt/Glycogen synthase kinase 3beta (GSK-3beta) axis both in a constitutive and agonist-dependent fashion. H(3)R stimulation with the H(3)R agonist immepip induces the phosphorylation of both Ser473 and Thr308 on Akt, a serine/threonine kinase that is important for neuronal development and function. The H(3)R-mediated activation of Akt can be inhibited by the H(3)R inverse agonist thioperamide, and by Wortmannin, LY294002 and PTX, suggesting the observed Akt activation occurs via a G(i/o)-mediated activation of phosphoinositide-3-kinase. H(3)R activation also results in the phosphorylation of Ser9 on GSK-3beta, which acts downstream of Akt and has a prominent role in brain function. In addition, we show the H(3)R-mediated phosphorylation of Akt at Ser473 to occur in primary rat cortical neurons and in rat brain slices. The discovery of this signaling property of the H(3)R adds new understanding to the roles of histamine and the H(3)R in brain function and pathology. 相似文献
11.
Gao X Zhang H Takahashi T Hsieh J Liao J Steinberg GK Zhao H 《Journal of neurochemistry》2008,105(3):943-955
We previously reported that ischemic postconditioning with a series of mechanical interruptions of reperfusion reduced infarct volume 2 days after focal ischemia in rats. Here, we extend this data by examining long-term protection and exploring underlying mechanisms involving the Akt, mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways. Post-conditioning reduced infarct and improved behavioral function assessed 30 days after stroke. Additionally, postconditioning increased levels of phosphorylated Akt (Ser473) as measured by western blot and Akt activity as measured by an in vitro kinase assay. Inhibiting Akt activity by a phosphoinositide 3-kinase inhibitor, LY294002, enlarged infarct in postconditioned rats. Postconditioning did not affect protein levels of phosphorylated-phosphatase and tensin homologue deleted on chromosome 10 or -phosphoinositide-dependent protein kinase-1 (molecules upstream of Akt) but did inhibit an increase in phosphorylated-glycogen synthase kinase 3β, an Akt effector. In addition, postconditioning blocked β-catenin phosphorylation subsequent to glycogen synthase kinase, but had no effect on total or non-phosphorylated active β-catenin protein levels. Furthermore, postconditioning inhibited increases in the amount of phosphorylated-c- Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in the MAPK pathway. Finally, postconditioning blocked death-promoting δPKC cleavage and attenuated reduction in phosphorylation of survival-promoting εPKC. In conclusion, our data suggest that postconditioning provides long-term protection against stroke in rats. Additionally, we found that Akt activity contributes to postconditioning's protection; furthermore, increases in εPKC activity, a survival-promoting pathway, and reductions in MAPK and δPKC activity; two putative death-promoting pathways correlate with postconditioning's protection. 相似文献
12.
糖原合成酶激酶3在猪气道上皮细胞鳞状分化中作用的初步探讨 总被引:1,自引:2,他引:1
为探讨糖原合成酶激酶3(glycogen synthase kinase 3,GSK3)在气道(气管和支气管)上皮细胞鳞状分化中的作用,培养原代猪气道上皮细胞,用GSK3的高度选择性抑制剂氯化锂处理,观察细胞形态变化,用Western blot检测β-连环素、磷酸化GSK3和鳞状分化标记物外皮蛋白的表达、RT-PCR检测鳞状分化标记物小脯氨酸丰富蛋白mRNA的表达、荧光素酶报告基因分析β-连环素/Tcf信号的激活状态。结果显示,锂能诱导猪气道上皮细胞出现鳞状形态、增加小脯氨酸丰富蛋白mRNA和外皮蛋白的表达、促进GSK3的抑制性丝氨酸磷酸化和β-连环素的细胞核内转位;锂能激活β-连环素/Tcf信号,但该作用出现于鳞状分化标记物增加之后。上述结果提示,GSK3可能参与猪气道上皮细胞的鳞状分化。 相似文献
13.
14.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells. 相似文献
15.
Effects of rat Axin domains on axis formation in Xenopus embryos 总被引:1,自引:0,他引:1
Wnt signaling plays an important role in axis formation in early vertebrate development. Axin is one Wnt signaling regulator that inhibits this pathway. The effects of the injection of mRNA of several rat Axin (rAxin) mutants on axis formation in Xenopus embryos were examined. It was found that rAxin mutants containing only a regulation of G-protein signaling (RGS) domain fragment or with deletion of the RGS domain induced axis formation. Because the RGS domain is a major adenomatous polyposis coli gene product (APC)-binding domain, APC association with glycogen synthase kinase 3beta (GSK3beta) on the Axin molecule may be important in inhibition of axis formation. The ventralizing activities of wild-type rAxin and a mutant in which the Dishevelled and Axin (DIX) domain was deleted (deltaDIX mutant) were examined. Histological examination and gene expression revealed that the ventralizing activity of the deltaDIX mutant was weaker than that of wild-type rAxin. This finding suggests that the C-terminus of rAxin contributes to the inhibition of Wnt signaling in Xenopus embryos. Furthermore, an rAxin mutant that contained both the RGS and GSK3beta-binding domains affected both the dorsal and ventral sides of blastomeres, mediated ectodermal fate and induced expansion of notochord and/or endoderm, but did not induce axis formation. 相似文献
16.
Effects of endogenous beta-amyloid overproduction on tau phosphorylation in cell culture 总被引:1,自引:0,他引:1
Wang ZF Li HL Li XC Zhang Q Tian Q Wang Q Xu H Wang JZ 《Journal of neurochemistry》2006,98(4):1167-1175
Alzheimer's disease is characterized by beta-amyloid (Abeta) overproduction and tau hyperphosphorylation. Recent studies have shown that synthetic Abeta promotes tau phosphorylation in vitro. However, whether endogenously overproduced Abeta promotes tau phosphorylation and the underlying mechanisms remain unknown. Here, we used mouse neuroblastoma N2a stably expressing wild-type amyloid precursor protein (APPwt) or the Swedish mutant APP (APPswe) to determine the alterations of phosphorylated tau and the related protein kinases. We found that phosphorylation of tau at paired helical filament (PHF)-1, pSer396 and pThr231 epitopes was significantly increased in cells transfected with APPwt and APPswe, which produced higher levels of Abeta than cells transfected with vector or amyloid precursor-like protein 1. The activity of glycogen synthase kinase-3 (GSK-3) was up-regulated with a concomitant reduction in the inhibitory phosphorylation of GSK-3 at its N-terminal Ser9 residue. In contrast, the activity of cyclin-dependent kinase-5 (CDK-5) and protein kinase C (PKC) was down-regulated. Inhibition of GSK-3 by LiCl, but not inhibition of CDK-5 by roscovitine, arrested Abeta secretion and tau phosphorylation. Inhibition of PKC by GF-109203X activated GSK-3, whereas activation of PKC by phorbol-12,13-dibutyrate inhibited GSK-3. These results suggest that endogenously overproduced Abeta induces increased tau phosphorylation through activation of GSK-3, and that inactivation of PKC is at least one of the mechanisms involved in GSK-3 activation. 相似文献
17.
Selectivity and Regulation in the Phospholipase A2 -Mediated Attack on Cholinergic Synaptic Vesicles by β-Bungarotoxin 总被引:1,自引:1,他引:0
Abstract The total fatty acid composition of purified Torpedo californica electric organ synaptic vesicles was determined by GLC analysis of methyl esters. Limit amounts of fatty acids released by high concentrations of either β-bungarotoxin (β-BuTx) or Naja naja venom phospholipase A2 (PLA2) acting in deoxycholate are reported. The time and enzyme concentration dependence for β-BuTx- and PLA2-induced release of fatty acids from intact synaptic vesicles indicate that PLA2 is 100- to 1,000-fold more active. The Ca2+ dependence for β-BuTx-induced release of fatty acids also was determined. ATP inhibits β-BuTx- but not PLA2-induced release of fatty acids from vesicles in a manner that can not be ascribed only to chelation of the required Ca2+. ATP, other nucleotides, and adenosine have complex effects on β-BuTx-induced release of fatty acids from egg yolk phosphatidylcholine dispersed in deoxycholate. The results suggest that β-BuTx-mediated hydrolysis of the cholinergic synaptic vesicle membrane is ~10- to 100-fold more effective at causing uncoupling of vesicles than is PLA2 and that the enzymatic activity of β-BuTx is subject to regulation by nucleotide-like factors. 相似文献
18.
Calcineurin dephosphorylates glycogen synthase kinase-3 beta at serine-9 in neuroblast-derived cells
Yeni Kim† Yun-Il Lee MiRan Seo So-Young Kim Ji-Eun Lee Hong-Duk Youn Yong-Sik Kim‡ Yong-Sung Juhnn 《Journal of neurochemistry》2009,111(2):344-354
This study examined the role of calcineurin, a major calcium-dependent protein phosphatase, in dephosphorylating Ser-9 and activating glycogen synthase kinase-3β (GSK-3β). Treatment with calcineurin inhibitors increased phosphorylation of GSK-3β at Ser-9 in SH-SY5Y human neuroblastoma cells. The over-expression of a constitutively active calcineurin mutant, calcineurin A beta (1–401), led to a significant decrease in phosphorylation at Ser-9, an increase in the activity of GSK-3β, and an increase in the phosphorylation of tau. Km of calcineurin for a GSK-3β phosphopeptide was 469.3 μM, and specific activity of calcineurin was 15.2 nmol/min/mg. In addition, calcineurin and GSK-3β were co-immunoprecipitated in neuron-derived cells and brain tissues, and calcineurin formed a complex only with dephosphorylated GSK-3β. We conclude that in vitro, calcineurin can dephosphorylate GSK-3β at Ser-9 and form a stable complex with GSK-3β, suggesting the possibility that calcineurin regulates the dephosphorylation and activation of GSK-3β in vivo . 相似文献
19.
20.
Akt is a known client protein of heat shock protein 90 (HSP90). We have found that HSP90 is responsible for Akt accumulation in the mitochondria in unstimulated cells. Treatment of SH-SY5Y neuroblastoma cells and human embryonic kidney cells with the HSP90 inhibitors novobiocin and geldanamycin caused substantial decreases in the level of Akt in the mitochondria without affecting the level of Akt in the cytosol. Moreover, intracerebroventricular injection of novobiocin into mice brains decreased Akt levels in cortical mitochondria. Knockdown of HSP90 expression with short interfering RNA also caused a significant decrease in Akt levels in the mitochondria without affecting total Akt levels. Using a mitochondrial import assay it was found that Akt is transported into the mitochondria. Furthermore, it was found that the mitochondrial import of Akt was independent of Akt activation as both an unmodified Akt and constitutively active mutant Akt; both readily accumulated in the mitochondria in an HSP90-dependent manner. Interestingly, incubation of isolated mitochondria with constitutively active Akt caused visible alterations in mitochondrial morphology, including pronounced remodeling of the mitochondrial matrix. This effect was blocked when Akt was mostly excluded from the mitochondria with novobiocin treatment. These results indicate that the level of Akt in the mitochondria is dependent on HSP90 chaperoning activity and that Akt import can cause dynamic changes in mitochondrial configuration. 相似文献