首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
Control of Thy-1 Glycoprotein Expression in Cultures of PC12 Cells   总被引:6,自引:3,他引:3  
The effects of nerve growth factor (NGF) and cholera toxin on the expression of the Thy-1 glycoprotein were examined in cultures of naive and primed PC12 cells using an enzyme-linked immunoadsorbent assay (ELISA). With primed PC12 cells, NGF induced a rapid increase in Thy-1 expression over a time course similar to that of neurite regeneration, with half-maximal and maximal increases apparent at 0.6 and 6 ng/ml NGF. Cholera toxin and dibutyryl cyclic AMP, but not B-cholera toxin or antibodies to the toxin receptor, were found to inhibit NGF-induced increases in Thy-1. Morphological differentiation of naive PC12 cells induced by NGF, but not cholera toxin, was also associated with increased expression of Thy-1. Despite showing a synergistic effect on morphological differentiation, cholera toxin was again found to inhibit NGF-induced increases in Thy-1 expression in cultures of naive PC12 cells. These data suggest that agents that interact directly or indirectly with adenylate cyclase may regulate the responsiveness of PC12 cells to NGF, and as such modulate the expression of the Thy-1 glycoprotein.  相似文献   

4.
5.
6.
The effects of nerve growth factor (NGF), dibutyryl cyclic AMP (db cAMP), and cholera toxin on neurofilament protein expression in cultures of PC12 rat pheochromocytoma cells were examined using an enzyme-linked immunoadsorbent assay (ELISA). Morphological differentiation induced by NGF was associated with up to 30-fold increases in the level of neurofilament protein recognised by monoclonal antibody RT97. A more rapid response was apparent from primed as compared to naive PC12 cells. Cholera toxin and db cAMP both induced morphological differentiation of naive PC12 cells, but failed to promote neurite regeneration from primed cells. Neither response was associated with a significant induction of neurofilament protein. Both cholera toxin and db cAMP, but not B-cholera toxin nor antibodies to the toxin receptor, were found to inhibit the neurofilament protein response induced by NGF. Primed cells were more susceptible to this inhibition, and both cholera toxin and db cAMP inhibited neurite regeneration from these cells. These data suggest that increased intracellular cyclic AMP can suppress the expression of neuronal differentiation antigens induced by NGF, and are consistent with a role for neurofilament protein in promoting or facilitating the formation of a stable neuritic network.  相似文献   

7.
8.
The growth of PC12 cells on a collagen substratum or on monolayers of several non-neuronal cell types was studied by measuring nerve growth factor (NGF)-dependent increases in the expression of a 150 X 10(3) (Mr) neurofilament protein subunit and the membrane glycoprotein Thy-1. Both responses were found to be greatly suppressed in cultures of fibroblasts as compared to the C2 and G8-1 muscle cell lines and the C6 glioma cell line. This suppression was associated with an inhibition of NGF-dependent neuritic outgrowth from PC12 cells grown on fibroblast monolayers. There was no evidence that fibroblasts secrete soluble molecules that directly inhibit these responses or neutralize NGF. In addition, there was no difference in the neurofilament protein response from PC12 cells that had been treated with NGF prior to coculture, and the now primed PC12 cells readily extended axons over fibroblast monolayers. These data demonstrate that cell-cell and/or cell-matrix interactions can modulate biochemical responses to NGF and suggest that responsiveness of neuronal cells to environmental cues is not immutable. Control of the latter may be at the level of expression of receptor molecules for cell-surface- or matrix-associated macromolecules and a similar mechanism operating during development could play a role in growth cone guidance.  相似文献   

9.
10.
The relative expression of the immunoglobulin superfamily members Thy-1 and L1 and the neural cell adhesion molecule (N-CAM) in PC12 cells grown in the presence of nerve growth factor (NGF), cholera toxin, or both has been quantified. Whereas NGF treatment induced increases in the cell surface expression of all three glycoproteins, treatment with cholera toxin resulted in the specific induction of L1. During the first few days of culture, cholera toxin acted synergistically with NGF to promote increases in neuritic outgrowth and the synthesis and cell surface accumulation of the 140- and 180-kilodalton subunits of N-CAM. In contrast, over the same period of culture, cholera toxin inhibited the NGF induction of Thy-1 and L1. Over longer periods of culture (3-5 days), cholera toxin inhibited the NGF induction of N-CAM and neurite outgrowth. A similar pattern of synergistic and inhibitory responses was observed when differentiation was induced by fibroblast growth factor (FGF) rather than NGF or when cholera toxin was replaced with forskolin. These data suggest that intracellular cyclic AMP can differentially modulate cell surface glycoprotein expression induced by either NGF or FGF. Of the three cell surface glycoproteins we have studied, temporal changes in N-CAM expression correlate best with the morphological differentiation status of PC12 cells.  相似文献   

11.
PC12 cells serve as a model for exploring nerve growth factor (NGF)-stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (NFLC) gene induction by NGF requires collaborative extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF-stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin-like growth factor-1 (IGF-1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF-1. From the set of NGF-specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra-1 and transforming growth factor beta 1 (TGF beta 1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation-dependent protein (RGT), and synapsin II required neither mitogen-activated protein kinase (MAPK) pathway. NGF-induction of the bradykinin B2 receptor and c-Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK-dependent genes (NFLC, transin, uPAR) as well as an ERK/JNK-independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF-dependent gene expression, but additional Ras-dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation-specific gene expression in PC12 cells.  相似文献   

12.
13.
14.
15.
Neurofibromin, the neurofibromatosis type 1 (NF1) gene product, contains a central domain homologous to a family of proteins known as Ras-GTPase-activating proteins (Ras-GAPs), which function as negative regulators of Ras. The loss of neurofibromin function has been thought to be implicated in the abnormal regulation of Ras in NF1-related pathogenesis. In this study, we found a novel role of neurofibromin in neuronal differentiation in conjunction with the regulation of Ras activity via its GAP-related domain (GRD) in neuronal cells. In PC12 cells, time-dependent increases in the GAP activity of cellular neurofibromin (NF1-GAP) were detected after NGF stimulation, which were correlated with the down-regulation of Ras activity during neurite elongation. Interestingly, the NF1-GAP increase was due to the induction of alternative splicing of NF1-GRD type I triggered by the NGF-induced Ras activation. Dominant-negative (DN) forms of NF1-GRD type I significantly inhibited the neurite extension of PC12 cells via regulation of the Ras state. NF1-GRD-DN also reduced axonal and dendritic branching/extension of rat embryonic hippocampal neurons. These results demonstrate that the mutual regulation of Ras and NF1-GAP is essential for normal neuronal differentiation and that abnormal regulation in neuronal cells may be implicated in NF1-related learning and memory disturbance.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号