首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have undertaken quantitative binding site studies in order to identify the binding site of the known microtubule destabilizing agents, the tubulyzines, in the tubulin dimer. Two different approaches were employed that utilized the tubulyzines and their derivatives. The first approach was based on a chemical affinity labeling method using tubulyzine affinity derivatives, and the second approach employed the mass spectrometric measurement of the differential reactivity of cysteines using the tubulyzines and monobromobimane. Based on overlapping data from these two approaches, we propose that the tubulyzines bind at the guanosine-5'-triphosphate binding site of beta-tubulin. Interestingly, we also show that the tubulyzines' binding to tubulin induces a conformational change in tubulin that prevents further interaction of the 239Cysbeta with other reagents.  相似文献   

2.
A gas chromatography—mass spectrometry method for quantitation of the thyreostatic agent methimazole in plasma is described. The drug was transferred from the plasma sample and derivatized in one step by extractive alkylation. Either of two alkylating agents benzylchloride or pentafluorobenzyl bromide were used. Deuterium-labelled methimazole was used as internal standard. The precision of the method at the level of 5 ng methimazole per ml plasma was 6%.  相似文献   

3.
4.
Lactose repressor protein has been modified with N-ethylmaleimide, two N-maleimide spin labels, and an N-maleimide fluorophore. The reaction with repressor cysteine residues has been characterized. Approximately 2 of the 3 eq of cysteine/repressor monomer are reactive toward these reagents. Repressor cysteines are reactive toward these reagents in the order cysteine 140 greater than or equal to cysteine 107 greater than cysteine 281. The reaction is sulfhydryl-specific. Comparison of chemical modification data obtained in this laboratory using a variety of sulfhydryl-specific reagents has been used to assess chemical features of individual cysteine environments. Effects of the maleimide reagents on biological activity have been determined. Only the fluorophore N-(3-pyrene)maleimide has significant effect; this agent selectively perturbs repressor's ability to bind to operator DNA. This result suggests that regions of protein structure surrounding 1 or more of the cysteine residues possess determinants required for normal operator DNA binding.  相似文献   

5.
In yeast hexokinase B, two thiols per monomer appeared to be essential when enzymic inactivation was produced by the concurrent alkylation of both of them, by several reagents including the affinity reagent N-bromoacetyl-2-D-galactosamine. However, it is shown that only one of these thiols is actually essential. Three of the four thiols present can be blocked by alkylation in the presence of a substrate in appropriate conditions, without loss of enzymic activity. Subsequently, in the absence of substrate, the affinity reagent reacts at the one remaining thiol, with complete inactivation. The same behavior can be obtained by reaction with iodoacetamide or by the formation of the -SCN group. The affinity reagent inactivates hexokinase B faster than does the isomeric glycosidic compound (glycosides being nonsubstrates), although the latter has twice the reactivity of the former toward glutathione. The reactions with alkylating agents, with or without substrate present, are used to classify the four thiols in the monomer. The temperature dependence of the alkylation of the essential thiol provides evidence for a transition in the molecule at about 31 degrees C. The inactive monomer containing the -SCN group can regenerate, by thiolysis, active enzyme with the thiol free. It can also perform an intramolecular cleavage of the chain. The latter reaction was used to locate the essential cysteine residue in the chain, at 80% of the length from the N terminus.  相似文献   

6.
7.
Yen TY  Pal S  de la Maza LM 《Biochemistry》2005,44(16):6250-6256
Members of the genus Chlamydia lack a peptidoglycan layer. As a substitute for peptidoglycan, it has been proposed that several cysteine rich proteins, including the major outer membrane protein (MOMP), form disulfide bonds to provide rigidity to the cell wall. Alignment of the amino acids sequences of the MOMP from various serovars of Chlamydia showed that they have from 7 to 10 cysteine residues and seven of them are highly conserved. Which of these are free cysteine residues and which are involved in disulfide bonds is unknown. The complexity of the outer membrane of Chlamydia precludes at this point the characterization of the structure of the cysteines directly in the bacteria. Therefore, mass spectrometric analysis of a purified and refolded MOMP was used in this study. Characterization of the structure of this preparation of the MOMP is critical because it has been shown, in an animal model, to be a very effective vaccine against respiratory and genital infections. Here, we demonstrated that in this MOMP preparation four cysteines are involved in disulfide bonds, with intramolecular pairs formed between Cys(48) and Cys(55) and between Cys(201) and Cys(203). A stepwise alkylation, reduction, alkylation process using two different alkylating reagents was required to establish the Cys(48)-Cys(55) disulfide pair. The other residues in MOMP, Cys(51), Cys(136), Cys(226), and Cys(351), are free cysteines and could potentially form disulfide-linked complexes with other MOMP or other membrane proteins.  相似文献   

8.
Alkylation at the N7 position of guanine in DNA renders the C8-hydrogen acidic. This serves as the basis for an assay of guanine N7 alkylation using [8-3H]-guanine-labeled DNA. I modified the assay by preparing a high specific activity substrate in vitro and by replacing the distillation step with charcoal adsorption of substrate. Using the appearance of noncharcoal-adsorbable label as a measure of guanine-N7 alkylation I examined the reaction of DNA with dimethyl sulfate and mechlorethamine. The rate of reaction of dimethyl sulfate with the N7 position of guanine in DNA was constant over time, i.e., loss of label from DNA proceeded linearly with time. On the other hand, the rate of reaction of mechlorethamine with DNA increased with time, consistent with the initial formation of the reactive aziridinium ion. The assay can also be used to compare the reaction rates of various alkylating agents with DNA. Thus, the acridine mustards ICR-170 and quinacrine mustard were far more potent alkylating agents than mechlorethamine. Furthermore the assay may be used to determine the alkylating potency and stability of various alkylating agent preparations: while frozen solutions of acridine mustards in organic solvents retained alkylating activity for several months, different commercial preparations of quinacrine mustard had little or no alkylating activity.  相似文献   

9.
(1) The sulphydryl groups of brain white matter proteolipids were studied by alkylation with iodoacetic acid and iodoacetamide in an organic solvent medium. To make sterically hindered sulphydryl groups available, the reaction was also carried out in the presence of sodium dodecyl sulphate. (2) In all cases, iodoacetamide was a better alkylating agent than was iodoacetic acid. (3) Only minimal alkylation of crude white matter proteolipids was obtained in the absence of detergent; addition of sodium dodecyl sulphate increased the availablity of SH groups. (4) Purified proteolipids prepared by column chromatography were alkylated to a lesser degree than were crude proteolipids. (5) Prior reduction with mercaptoethanol resulted in the quantitative conversion of cysteine to S-carboxymethylcysteine with either alkylating agent and in both preparations. (6) The possibility of a conformational difference between the protein in the crude and purified preparations is discussed.  相似文献   

10.
A procedure for reduction and alkylation of cysteine residues in proteins was developed using the volatile reagents triethylphosphine and iodoethanol. These reagents may be used to modify proteins in solution, as well as proteins in gel slices, prior to proteolytic digestion and mass spectral analysis. The procedure eliminates several steps with both types of samples. Samples in solution do not need to be desalted following reduction and alkylation, with excess reagent being removed under vacuum. For gel slices, the procedure combines washing, destaining, reduction and alkylation into a single step. The procedure was applied successfully to samples as complex as serum, and we demonstrated alkylation of cysteines to be quantitative in purified proteins. We also were able to reduce and alkylate proteins with these reagents during the gas phase. Elimination of the need for desalting of samples after reaction raised the possibility of automation of the procedure for liquid samples, which is difficult with conventional reduction and alkylation chemistries.  相似文献   

11.
We determined the adduct maps of S(N)1 and S(N)2 alkylating agents in cultured human cells (in vivo) and in vitro to probe DNA-protein interactions along sequences of the promoter and exon 1 of the Fragile-X mental retardation 1 (FMR1) gene. Using ligation-mediated polymerase chain reaction (LMPCR), we compared the piperidine-sensitive alkylpurines sites generated by treating cultured cells (in vivo) and naked DNA (in vitro) with S(N)1 (N-methyl-N-nitrosourea, N-nitroso(acetoxymethyl)methylamine and 1-methyl-3-nitro-1-nitrosoguanidine) and S(N)2 alkylating agents (dimethyl sulfate (DMS), methane sulfonic acid methyl ester, iodo methane, diethyl sulfate, methane sulfonic acid ethyl ester and iodo ethane). The FMR1 promoter has four sites where DNA-protein interactions are observed. In these regions, the S(N)1 methylating agent reactions produced only hypo-reactive sites. In contrast, iodoalkane S(N)2 alkylating agents (MeI and EtI) reactions generated only hyper-reactive sites. Although there are hyper-reactive sites for the other S(N)2 reagents, the hyper-reactive site at +14 on the FMR1 map is more pronounced for the sulfate and sulfonate-derived alkylating agents than for the iodoalkanes. However, DMS modification in the presence of methyl sulfone, a compound that does not alkylate DNA, eliminates the hyper-reactive site observed at +14. This suggests that the electron-rich oxygen atoms of the sulfate and sulfonate-derived S(N)2 alkylating agent structure position the alkylating moiety to the neighboring N-7-guanine position to favor alkyl transfer to the guanine. Using KMnO(4) to probe for single-strand DNA, an unpaired cytosine base was detected at the 5'-side of the hyper- reactive guanine base at position +14, consistent with the formation of a local DNA single-strand bulge. In conclusion, we show that the sequence context-dependent formation of alkylpurines is determined by the chemical nature of the alkylating agent, the DNA sequence context, chromatin structure, and the presence of other non-reactive molecules that can inhibit alkylation.  相似文献   

12.
Roth RB  Samson LD 《Mutation research》2000,462(2-3):107-120
Alkylating agents represent a highly cytotoxic class of chemotherapeutic compounds that are extremely effective anti-tumor agents. Unfortunately, alkylating agents damage both malignant and non-malignant tissues. Bone marrow is especially sensitive to damage by alkylating agent chemotherapy, and is a dose-limiting tissue when treating cancer patients. One strategy to overcome bone marrow sensitivity to alkylating agent exposure involves gene transfer of the DNA repair protein O(6)-methylguanine DNA methyltransferase (O(6)MeG DNA MTase) into bone marrow cells. O(6)MeG DNA MTase is of particular interest because it functions to protect against the mutagenic, clastogenic and cytotoxic effects of many chemotherapeutic alkylating agents. By increasing the O(6)MeG DNA MTase repair capacity of bone marrow cells, it is hoped that this tissue will become alkylation resistant, thereby increasing the therapeutic window for the selective destruction of malignant tissue. In this review, the field of O(6)MeG DNA MTase gene transfer into bone marrow cells will be summarized with an emphasis placed on strategies used for suppressing the deleterious side effects of chemotherapeutic alkylating agent treatment.  相似文献   

13.
The benzoacronycine derivative, S23906-1, was characterized recently as a novel potent antitumor agent through alkylation of the N2 position of guanines in DNA. We show here that its reactivity towards DNA can be modulated by glutathione (GSH). The formation of covalent adducts between GSH and S23906-1 was evidenced by EI-MS, and the use of different GSH derivatives, amino acids and dipeptides revealed that the cysteine thiol group is absolutely required for complex formation because glutathione disulfide (GSSG) and other S-blocked derivatives failed to react covalently with S23906-1. Gel shift assays and fluorescence measurements indicated that the binding of S23906-1 to DNA and to GSH are mutually exclusive. Binding of S23906-1 to an excess of GSH prevents DNA alkylation. Additional EI-MS measurements performed with the mixed diester, S28053-1, showed that the acetate leaving group at the C1 position is the main reactive site in the drug: a reaction scheme common to GSH and guanines is presented. At the cellular level, the presence of GSH slightly reduces the cytotoxic potential of S23906-1 towards KB-3-1 epidermoid carcinoma cells. The GSH-induced threefold reduction of the cytotoxicity of S23906-1 is attributed to the reduced formation of lethal drug-DNA covalent complexes in cells. Treatment of the cells with buthionine sulfoximine, an inhibitor of GSH biosynthesis, facilitates the formation of drug-DNA adducts and promotes the cytotoxic activity. This study identifies GSH as a reactant for the antitumor drug, S23906-1, and illustrates a pathway by which GSH may modulate the cellular sensitivity to this DNA alkylating agent. The results presented here, using GSH as a biological nucleophile, fully support our initial hypothesis that DNA alkylation is the major mechanism of action of the promising anticancer drug S23906-1.  相似文献   

14.
The reaction of cytosine and 5-hydroxymethyl-cytosine (OHMeCyt) with a variety of monofunctional alkylating agents has been investigated to evaluate further the possible role of cytosine alkylation in mutagenesis and the possibility that the immunity of T-even phages to mutation by methyl methanesulphonate (MMS) was due to the unreactivity of OHMeCyt towards this agent. Both cytosine and OHMeCyt reacted equally well with the methylating agents MMS and N-methyl-N-nitrosourea (MNU) affording 6% and less than 1% respectively of the 3-substituted derivative. No product was isolated following subjection of the bases to reaction with ethyl methane-sulphonate (EMS), N-ethyl-N-nitrosourea (ENU) or iso-propyl methane-sulphonate (iPMS).  相似文献   

15.
MS‐based analysis of the acetylproteome has highlighted a role for acetylation in a wide array of biological processes including gene regulation, metabolism, and cellular signaling. To date, anti‐acetyllysine antibodies have been used as the predominant affinity reagent for enrichment of acetyllysine‐containing peptides and proteins; however, these reagents suffer from high nonspecific binding and lot‐to‐lot variability. Bromodomains represent potential affinity reagents for acetylated proteins and peptides, given their natural role in recognition of acetylated sequence motifs in vivo. To evaluate their efficacy, we generated recombinant proteins representing all known yeast bromodomains. Bromodomain specificity for acetylated peptides was determined using degenerate peptide arrays, leading to the observation that different bromodomains display a wide array of binding specificities. Despite their relatively weak affinity, we demonstrate the ability of selected bromodomains to enrich acetylated peptides from a complex biological mixture prior to mass spectrometric analysis. Finally, we demonstrate a method for improving the utility of bromodomain enrichment for MS through engineering novel affinity reagents using combinatorial tandem bromodomain pairs.  相似文献   

16.
The identification of antigenic epitopes is important for the optimization of monoclonal antibodies (mAbs) intended as therapeutic agents. MS has proven to be a powerful tool for the study of noncovalent molecular interactions such as those involved in antibody-antigen (Ab-Ag) binding. In this work, we described a novel methodology for mapping a linear epitope based on direct mass spectrometric measurement of Ab-Ag complexes. To demonstrate the utility of our methodology, we employed two approaches, epitope excision and epitope extraction, to study a model system consisting of a Fab antibody fragment with specificity toward the peptide aβ(1-40). In epitope excision, the Fab and aβ(1-40) complex was treated with proteolytic enzymes and the digested complexes were directly monitored by MS under native conditions. Mass differences between the Fab-aβ complex and the Fab control revealed the size of epitope peptides that were bound to the Fab. Using the epitope extraction approach, aβ(1-40) was first digested by Lys-C, and the fragment containing the epitope was selected by Fab binding. Data analysis allowed mapping of the epitope to aβ(16-27) which is in good agreement with previously unpublished data. The utility of the methodology was demonstrated by elucidating the binding epitopes for two full-length anti-aβ(1-40) mAbs.  相似文献   

17.
DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.  相似文献   

18.
The reaction of one of the four cysteinyl residues of thymidylate synthetase from methotrexate-resistant Lactobacillus casei with a variety of sulfhydryl reagents results in complete inhibition of the enzyme. Kinetic studies indicate that the rates of reactivity of the reagents tested are N-ethylmaleimide > iodoacetamide > N-(iodoacetylaminoethyl)-S-naphthylamine-1-sulfonic acid > iodoacetic acid. The enzyme is also inactivated by 5-Hg-deoxyuridylate, a compound which reacts stoichiometrically with a single cysteine. Unlike the other reagents, the inhibition produced by this compound can be completely reversed by added thiols. The same cysteine appears to react with all of the sulfhydryl reagents, as shown by competition experiments and by protection against inactivation by deoxyuridylate. Even at a 100-fold excess of the alkylating agents, only one of the four cysteines in the native enzyme was reactive, attesting to the uniqueness of this residue. Carboxypeptidase A inactivation of the enzyme does not affect either the binding of deoxyuridylate to the enzyme or the reactivity of N-ethylmaleimide with the “catalytic” cysteine. Under denaturing conditions, all four cysteinyl residues react with N-ethylmaleimide or iodoacetate, as shown by identifying the reaction products by amino acid analysis. The covalent ternary complex [(+)5,10-methylenetetrahydrofolate-5-fluorodeoxyuridylate-thymidylate synthetase] (molar ratio = 2:2:1) revealed only two cysteinyl residues capable of reacting with N-ethylmaleimide or iodoacetate upon denaturation. From these data, it appears that one cysteine is involved in the binding of deoxyuridylate and that two of the enzyme's four cysteines are responsible for binding 5-fluorodeoxyuridylate in the ternary complex.  相似文献   

19.
The substituted cysteine accessibility approach, combined with chemical modification using membrane-impermeant alkylating reagents, was used to identify functionally important structural elements of the rat type IIa Na(+)/P(i) cotransporter protein. Single point mutants with different amino acids replaced by cysteines were made and the constructs expressed in Xenopus oocytes were tested for function by electrophysiology. Of the 15 mutants with substituted cysteines located at or near predicted membrane-spanning domains and associated linker regions, 6 displayed measurable transport function comparable to wild-type (WT) protein. Transport function of oocytes expressing WT protein was unchanged after exposure to the alkylating reagent 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA, 100 microM), which indicated that native cysteines were inaccessible. However, for one of the mutants (S460C) that showed kinetic properties comparable with the WT, alkylation led to a complete suppression of P(i) transport. Alkylation in 100 mM Na(+) by either cationic ([2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET), MTSEA) or anionic [sodium(2-sulfonatoethyl)methanethiosulfonate (MTSES)] reagents suppressed the P(i) response equally well, whereas exposure to methanethiosulfonate (MTS) reagents in 0 mM Na(+) resulted in protection from the MTS effect at depolarized potentials. This indicated that accessibility to site 460 was dependent on the conformational state of the empty carrier. The slippage current remained after alkylation. Moreover, after alkylation, phosphonoformic acid and saturating P(i) suppressed the slippage current equally, which indicated that P(i) binding could occur without cotransport. Pre-steady state relaxations were partially suppressed and their kinetics were significantly faster after alkylation; nevertheless, the remaining charge movement was Na(+) dependent, consistent with an intact slippage pathway. Based on an alternating access model for type IIa Na(+)/P(i) cotransport, these results suggest that site 460 is located in a region involved in conformational changes of the empty carrier.  相似文献   

20.
Compounds based on the 3-Br-isoxazoline scaffold fully inhibit glyceraldehyde 3-phosphate dehydrogenase from Plasmodium falciparum by selectively alkylating all four catalytic cysteines of the tetramer. Here, we show that, under the same experimental conditions that led to a fast and complete inhibition of the protozoan enzyme, the human ortholog was only 25% inhibited, with the alkylation of a single catalytic cysteine within the tetramer. The partial alkylation seems to produce a slow conformational rearrangement that severely limits the accessibility of the remaining active sites to bulky 3-Br-isoxazoline derivatives, but not to the substrate or smaller alkylating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号