首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Functional modules are basic units of cell function, and exploring them is important for understanding the organization, regulation and execution of cell processes. Functional modules in single biological networks (e.g., the protein-protein interaction network), have been the focus of recent studies. Functional modules in the integrated network are composite functional modules, which imply the complex relationships involving multiple biological interaction types, and detect them will help us understand the complexity of cell processes.  相似文献   

2.

Background  

Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated.  相似文献   

3.
4.

Background  

A protein-protein interaction network (PIN) was suggested to be a disassortative network, in which interactions between high- and low-degree nodes are favored while hub-hub interactions are suppressed. It was postulated that a disassortative structure minimizes unfavorable cross-talks between different hub-centric functional modules and was positively selected in evolution. However, by re-examining yeast PIN data, several researchers reported that the disassortative structure observed in a PIN might be an experimental artifact. Therefore, the existence of a disassortative structure and its possible evolutionary mechanism remains unclear.  相似文献   

5.

Background  

If biology is modular then clusters, or communities, of proteins derived using only protein interaction network structure should define protein modules with similar biological roles. We investigate the link between biological modules and network communities in yeast and its relationship to the scale at which we probe the network.  相似文献   

6.
7.

Background  

The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affects the evolution of its member proteins remains unclear.  相似文献   

8.

Background  

Co-expression network-based approaches have become popular in analyzing microarray data, such as for detecting functional gene modules. However, co-expression networks are often constructed by ad hoc methods, and network-based analyses have not been shown to outperform the conventional cluster analyses, partially due to the lack of an unbiased evaluation metric.  相似文献   

9.

Background  

Recent analyses in systems biology pursue the discovery of functional modules within the cell. Recognition of such modules requires the integrative analysis of genome-wide experimental data together with available functional schemes. In this line, methods to bridge the gap between the abstract definitions of cellular processes in current schemes and the interlinked nature of biological networks are required.  相似文献   

10.

Background  

Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI) networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules) in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules.  相似文献   

11.

Background  

Network motifs are small modules that show interesting functional and dynamic properties, and are believed to be the building blocks of complex cellular processes. However, the mechanistic details of such modules are often unknown: there is uncertainty about the motif architecture as well as the functional form and parameter values when converted to ordinary differential equations (ODEs). This translates into a number of candidate models being compatible with the system under study. A variety of statistical methods exist for ranking models including maximum likelihood-based and Bayesian methods. Our objective is to show how such methods can be applied in a typical systems biology setting.  相似文献   

12.

Background

With ever increasing amount of available data on biological networks, modeling and understanding the structure of these large networks is an important problem with profound biological implications. Cellular functions and biochemical events are coordinately carried out by groups of proteins interacting each other in biological modules. Identifying of such modules in protein interaction networks is very important for understanding the structure and function of these fundamental cellular networks. Therefore, developing an effective computational method to uncover biological modules should be highly challenging and indispensable.

Results

The purpose of this study is to introduce a new quantitative measure modularity density into the field of biomolecular networks and develop new algorithms for detecting functional modules in protein-protein interaction (PPI) networks. Specifically, we adopt the simulated annealing (SA) to maximize the modularity density and evaluate its efficiency on simulated networks. In order to address the computational complexity of SA procedure, we devise a spectral method for optimizing the index and apply it to a yeast PPI network.

Conclusions

Our analysis of detected modules by the present method suggests that most of these modules have well biological significance in context of protein complexes. Comparison with the MCL and the modularity based methods shows the efficiency of our method.
  相似文献   

13.

Background  

The sparse connectivity of protein-protein interaction data sets makes identification of functional modules challenging. The purpose of this study is to critically evaluate a novel clustering technique for clustering and detecting functional modules in protein-protein interaction networks, termed STM.  相似文献   

14.

Background  

We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins.  相似文献   

15.
16.
17.
Wang B  Gao L 《Proteome science》2012,10(Z1):S16

Background

Network alignment is one of the most common biological network comparison methods. Aligning protein-protein interaction (PPI) networks of different species is of great important to detect evolutionary conserved pathways or protein complexes across species through the identification of conserved interactions, and to improve our insight into biological systems. Global network alignment (GNA) problem is NP-complete, for which only heuristic methods have been proposed so far. Generally, the current GNA methods fall into global heuristic seed-and-extend approaches. These methods can not get the best overall consistent alignment between networks for the opinionated local seed. Furthermore These methods are lost in maximizing the number of aligned edges between two networks without considering the original structures of functional modules.

Methods

We present a novel seed selection strategy for global network alignment by constructing the pairs of hub nodes of networks to be aligned into multiple seeds. Beginning from every hub seed and using the membership similarity of nodes to quantify to what extent the nodes can participate in functional modules associated with current seed topologically we align the networks by modules. By this way we can maintain the functional modules are not damaged during the heuristic alignment process. And our method is efficient in resolving the fatal problem of most conventional algorithms that the initialization selected seeds have a direct influence on the alignment result. The similarity measures between network nodes (e.g., proteins) include sequence similarity, centrality similarity, and dynamic membership similarity and our algorithm can be called Multiple Hubs-based Alignment (MHA).

Results

When applying our seed selection strategy to several pairs of real PPI networks, it is observed that our method is working to strike a balance, extending the conserved interactions while maintaining the functional modules unchanged. In the case study, we assess the effectiveness of MHA on the alignment of the yeast and fly PPI networks. Our method outperforms state-of-the-art algorithms at detecting conserved functional modules and retrieves in particular 86% more conserved interactions than IsoRank.

Conclusions

We believe that our seed selection strategy will lead us to obtain more topologically and biologically similar alignment result. And it can be used as the reference and complement of other heuristic methods to seek more meaningful alignment results.
  相似文献   

18.

Background  

Many proteins are highly modular, being assembled from globular domains and segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning independently of protein tertiary structure, are most abundant in natively disordered polypeptides but are also found in accessible parts of globular domains, such as exposed loops. The prediction of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional matches from stochastically occurring non-functional matches. Although functionality can only be confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes associated with functional instances such as occurrence in the correct taxonomic range, cellular compartment, conservation in homologues and accessibility to interacting partners. Several tools now use these attributes to classify putative motifs based on confidence of functionality.  相似文献   

19.

Background  

The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms.  相似文献   

20.

Background  

While detection and analysis of functional modules in biological systems have received great attention in recent years, we still lack a complete understanding of how such modules emerge. One theory is that systems must encounter a varying selection (i.e. environment) in order for modularity to emerge. Here, we provide an alternative and simpler explanation using a realistic model of biological signaling pathways and simulating their evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号