共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A T Pearman H C Castro-Faria-Neto T M McIntyre S M Prescott D M Stafforini 《Life sciences》2001,69(20):2361-2370
We have cloned a cDNA for human UMP-CMP kinase from a macrophage cDNA library. Sequence analysis showed that this cDNA is derived from the same gene as a previously reported EST-derived cDNA. Here we show that a conspicuous difference between these two clones, 73 additional 5' nucleotides in the EST clone, including a putative translational start site, is not functionally significant. This work shows that the additional 5'sequence in the EST clone was unnecessary for enzymatic activity and nonfunctional in the initiation of translation. Specifically, we found that protein expressed by both the macrophage-derived cDNA and the extended cDNA had the same relative molecular mass, consistent with use of an ATG internal to the macrophage-derived clone as the functional start site. In addition, this work more precisely defines the catalytic activity of UMP-CMP kinase. Here, we show a 3-fold greater substrate preference for CMP relative to UMP, identify ATP and UTP as the preferred phosphate donors for the reaction, and demonstrate that the reaction is Mg2+-dependent. In addition, investigation of UMP-CMP-kinase expression revealed two mRNA products in immune tissues and cancer cell lines. The smaller RNA product was previously undescribed. 相似文献
3.
4.
We have investigated the functional coupling of alpha and beta isoforms of the human thromboxane A(2) receptor (TP) to Galpha(16) and Galpha(12) members of the G(q) and G(12) families of heterotrimeric G proteins in human embryonic kidney (HEK) 293 cell lines HEK.alpha10 or HEK.beta3, stably over-expressing TPalpha and TPbeta, respectively. Moreover, using HEK.TP(Delta328) cells which over-express a variant of TP truncated at the point of divergence of TPalpha and TPbeta, we investigated the requirement of the C-tail per se in mediating G protein coupling and effector activation. Both TPalpha and TPbeta couple similarly to Galpha(16) to affect increases in inositol 1,4,5-trisphosphate (IP(3)) and mobilisation of intracellular calcium ([Ca(2+)](i)) in response to the TP agonist U46619. Whilst both TP isoforms mediated [Ca(2+)](i) mobilisation in cells co-transfected with Galpha(12), neither receptor generated corresponding increases in IP(3), indicating that the Galpha(12)-mediated increases in [Ca(2+)](i) do not involve PLC activation. Verapamil, an inhibitor of voltage dependent Ca(2+) channels, reduced [Ca(2+)](i) mobilisation in TPalpha and TPbeta cells co-transfected with Galpha(12) to approximately 40% of that mobilised in its absence, whereas [8-(N,N-diethylamino)-octyl-3,4, 5-trimethoxybenzoate, hydrochloride] (TMB-8), an antagonist of intracellular Ca(2+) release, had no effect on [Ca(2+)](i) mobilisation by either receptor isoform co-transfected with Galpha(12). Despite the lack of differential coupling specificity by TPalpha and TPbeta, TP(Delta328) signalled more efficiently in the absence of a co-transfected G protein compared to the wild type receptors but, on the other hand, displayed an impaired ability to couple to co-transfected Galpha(11), Galpha(12) or Galpha(16) subunits. In studies investigating the role of the C-tail in influencing coupling to the effector adenylyl cyclase, similar to TPalpha but not TPbeta, TP(Delta328) coupled to Galpha(s), leading to increased adenosine 3',5'-cyclic monophosphate (cAMP), rather than to Galpha(i). Whereas TP(Delta328) signalled more efficiently in the absence of co-transfected G protein compared to the wild type TPalpha, co-transfection of Galpha(s) did not augment cAMP generation by TP(Delta328). Hence, from these studies involving the wild type TPalpha, TPbeta and TP(Delta328), we conclude that the C-tail sequences of TP are not a major determinant of G protein coupling specificity to Galpha(11) and Galpha(16) members of the G(q) family or to Galpha(12); it may play a role in determining G(s) versus G(i) coupling and may act as a determinant of coupling efficiency. 相似文献
5.
Heterodimerization of the alpha and beta isoforms of the human thromboxane receptor enhances isoprostane signaling 总被引:1,自引:0,他引:1
Wilson SJ McGinley K Huang AJ Smyth EM 《Biochemical and biophysical research communications》2007,352(2):397-403
Isoprostanes are free radical catalyzed products of arachidonic acid that are elevated in pro-oxidant disease states. Two isoprostanes, 8-isoprostaglandin F(2alpha) (iPF(2alpha)III) and 8-isoprostaglandin E2 (iPE2III), act at the receptor for thromboxane A2 (the TP) to mediate pro-atherogenic effects in vivo. We confirmed dimerization of the human TP isoforms, TPalpha and TPbeta, and determined the impact on isoprostane signaling. No overt changes in ligand binding at the TP were observed as a result of TPalpha/TPbeta coexpression. The response to iPF(2alpha)III or iPE2III was enhanced in HEK293 cells stably coexpressing TPalpha and TPbeta, as measured by inositol phosphate generation or intracellular calcium mobilization, relative to cells expressing TPalpha or TPbeta individually. In contrast, the response to traditional thromboxane analogs was unaltered. Augmented isoprostane signaling was similarly observed in HEK 293 cell transiently transfected with TPalpha and TPbeta. These results indicate that TPalpha/TPbeta dimerization enhances isoprostane-mediated signal transduction. 相似文献
6.
Laroche G Lépine MC Thériault C Giguère P Giguère V Gallant MA de Brum-Fernandes A Parent JL 《Cellular signalling》2005,17(11):1373-1383
Thromboxane A(2) (TXA(2)) is a potent mediator of inflammation, vasoconstriction and oxidative stress. The TXA(2) receptor (TP) is a G protein-coupled receptor (GPCR) that is expressed as two alternatively spliced isoforms, alpha (343 residues) and beta (407 residues) that share the first 328 residues. For many years GPCRs were assumed to exist and function as monomeric species, but increasing evidence suggests that a dimer is the minimal functional unit of GPCRs. In the present report, using co-immunoprecipitation of differentially tagged TP expressed in HEK293 cells, we demonstrate that TPalpha and TPbeta form homo- and hetero-oligomers. Immunoblotting of lysates from human platelets with an anti-TP specific antibody revealed the presence of endogenously expressed TP oligomers. We show that TP oligomerization is an agonist-independent process highly affected by the reducing agent dithiothreitol suggesting the involvement of disulfide bonds in TP oligomerization. Over-expression of G protein-coupled receptor kinases and arrestins did not modulate the extent of receptor dimerization/oligomerization. Co-expression of two TP signaling-deficient mutants, R60L and E2402R, resulted in rescuing of receptor signal transduction suggesting that dimers/oligomers constitute the functional units of this receptor. Interestingly, TPalpha which does not undergo constitutive or agonist-induced endocytosis on its own was subjected to both types of endocytosis when co-expressed with TPbeta, indicating that TPalpha can display intracellular trafficking when complexed through hetero-oligomerization with TPbeta. 相似文献
7.
8.
Characterization of protein-binding to the spinach chloroplast psbA mRNA 5' untranslated region. 总被引:1,自引:0,他引:1 下载免费PDF全文
RNA-binding proteins play a major role in regulating mRNA metabolism in chloroplasts. In this work we characterized two proteins, of 43 and 47 kDa, which bind to the spinach psbA mRNA 5' untranslated region (psbA encoding the D1 protein of photosystem II). The 43 kDa protein, which is present in the stroma and in membranes, co-sediments with a complex of 68S. It was purified, and the N-terminal sequence was determined. Upon homology search it was identified as the chloroplast homologue of the Escherichia coli ribosomal protein S1. The 47 kDa protein, which, in contrast with the 43 kDa protein, sediments with a small sedimentation coefficient, is only detected in the stromal fraction. It is soluble in an uncomplexed form. By deletion analysis, an element within the psbA mRNA 5' untranslated region was identified that is necessary but not sufficient for binding of stromal proteins. The 'central protein binding element' ranges from nucleotide -49 to -9 of the psbA mRNA 5' untranslated region. It comprises the Shine-Dalgarno-like GGAG motif and, 7 nucleotides upstream, an endonucleolytic cleavage site involved in psbA mRNA degradation in vitro . The mechanistic impacts of this region in relation to RNA-binding proteins are discussed. 相似文献
9.
10.
Thromboxane (TX) A(2) is a potent stimulator of platelet activation/aggregation and smooth muscle contraction and contributes to a variety of pathologies within the vasculature. In this study, we investigated the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated by examining the mechanism of agonist-induced desensitization of intracellular signalling and second messenger generation by TPbeta. It was established that TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) has been identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs. TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization. Thromboxane (TX) A(2) is a potent stimulator of platelet aggregation and smooth muscle contraction and contributes to a variety of vascular pathologies. Herein the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated was investigated by examining the mechanism of its agonist-induced desensitization of intracellular signalling and second messenger generation. TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) was identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization. 相似文献
11.
The ACTH receptor [melanocortin-2 receptor (MC2R)] is the smallest known G protein-coupled receptor (GPCR). Herein, human MC2R accessory protein (MRAP) isoforms alpha and beta, cloned from a human fetal adrenal gland, were expressed with c-Myc-tagged MC2R (Myc-MC2R) in 293/Flp recombinase target site cells by homologous recombination. Although insertion of Myc-MC2R at the plasma membrane occurred without MRAP assistance, ACTH stimulation of cAMP production was only detected in cells coexpressing MC2R with either MRAP isoform. On the other hand, a MC2R-green fluorescent protein fusion transfected with either MRAPalpha or MRAPbeta was impaired both in cell membrane localization and signaling. MRAP isoforms were also tagged with either Flag or 6xHis epitopes. In cell populations coexpressing transiently and/or stably Myc-MC2R with MRAPalpha or MRAPbeta, stimulation with ACTH induced production of cAMP with EC(50) values lower in MRAPalpha- than in MRAPbeta-expressing cells. ACTH only bound Myc-MC2R in the presence of MRAP. Higher Myc-MC2R cell surface density was observed in the presence of MRAPbeta comparatively to MRAPalpha, possibly contributing to higher ACTH binding capacity and higher maximal cAMP responses observed in MRAPbeta-expressing cells. Immunofluorescence studies indicated that MRAP isoforms were localized near the plasma membrane and in the vicinity, but not colocalized, with Myc-MC2R. In summary, through the generation of a new all-human experimental model devoid of endogenous MCRs, we present evidence that human MRAP isoforms, although not essential for MC2R localization at the plasma membrane, are essential for ACTH binding and ACTH-induced cAMP production and that they differentially regulate, although modestly, cell membrane density and functional properties of MC2R. 相似文献
12.
The murine double minute 2 (mdm2) gene is essential for embryogenesis in mice that express the p53 tumor suppressor protein. Mdm2 levels must be regulated tightly because overexpression of mdm2 contributes to tumorigenesis. We investigated whether the 5' and 3' untranslated regions (UTRs) of murine mdm2 affect the expression of MDM2 proteins. Induction of mdm2 expression by p53 results in synthesis of an mdm2 mRNA with a short 5' UTR. The long 5' UTR increases internal initiation of translation of a minor MDM2 protein, p76(MDM2), without affecting the efficiency of translation of the full-length p90(MDM2). We discovered two alternative 3' untranslated regions in murine mdm2 mRNA expressed in the testis. The longer 3' UTR contains a consensus instability element, but mdm2 mRNAs containing the long and short 3' UTRs have comparable half-lives. The 3' UTRs do not affect either initiation codon use or translation efficiency. Thus, the murine 5' UTR, but not the 3'UTR, influences the ratio of the two MDM2 proteins but neither UTR affects MDM2 abundance significantly. 相似文献
13.
N G Miyamoto 《Nucleic acids research》1987,15(21):9095
14.
There is increasing evidence that the 5'UTR of mRNAs affects regulation of gene expression in eukaryotic cells. We examined the overexpression of the mu-opioid receptor in High Five insect cells, employing rat mu-receptor cDNA linked to variable lenghts of their native 5'UTR. The sequences employed consist of either 209 nucleotides (termed ,,long") upstream the translation initiation site of the mu-receptor mRNA, or a truncated 5'UTR comprising only 11 nucleotides (,,short"). These constructs served to generate recombinant baculovirus for the expression of mu-receptor protein in High Five insect cells. 48 hours after baculovirus infection cells were harvested for mu-receptor characterization or RNA analysis. Scatchard analysis of radioligand binding consistently revealed three to four fold higher concentrations of the mu-opioid receptors expressed with the ,,long" over the ,,short" UTR containing baculovirus. The distinct expression rates of mu-receptors paralleled the amounts of mRNAs determined by RNase protection assay. Regardless of the distinct 5'UTR regions, the expressed opioid receptors displayed identical high affinity binding characteristics for the opioid antagonist diprenorphine and similar EC50 values to inhibit forskolin (10(-5) M) stimulated cAMP synthesis. Our results demonstrate that the native 5'UTR of the mu-opioid receptor has an enhancing effect on expression in the baculovirus/insect cell system. 相似文献
15.
16.
Skeletal muscle actin mRNA. Characterization of the 3' untranslated region. 总被引:26,自引:8,他引:26 下载免费PDF全文
M Shani U Nudel D Zevin-Sonkin R Zakut D Givol D Katcoff Y Carmon J Reiter A M Frischauf D Yaffe 《Nucleic acids research》1981,9(3):579-589
Plasmids p749, p106, and p150 contain cDNA inserts complementary to rat skeletal muscle actin mRNA. Nucleotide sequence analysis indicates the following sequence relationships: p749 specifies codons 171 to 360; p150 specifies codons 357 to 374 together with 120 nucleotides of the 3'-non-translated region; p106 specifies the last actin amino acid codon, the termination codon and the entire 3' non-translated region. Plasmid p749 hybridized with RNA extracted from rat skeletal muscle, cardiac muscle, smooth (stomach) muscle, and from brain. It also hybridizes well with RNA extracted from skeletal muscle and brain of dog and chick. Plasmid p106 hybridized specifically with rat striated muscles (skeletal and cardiac muscle) mRNA but not with mRNA from rat stomach and from rat brain. It also hybridized to RNA extracted from skeletal muscle of rabbit and dog but not from chick. Thermal stability of the hybrids and sensitivity to S1 digestion also indicated substantial divergence between the 3' untranslated end of rat and dog skeletal muscle actins. The investigation shows that the coding regions of actin genes are highly conserved, whereas the 3' non-coding regions diverged considerably during evolution. Probes constructed from the 3' non-coding regions of actin mRNAs can be used to identify the various actin mRNA and actin genes. 相似文献
17.
GRKs play a key role in regulating G protein-coupled receptor (GPCR) responsiveness. To investigate the role of GRKs in desensitization of TP, we replaced threonines with favorable phosphorylation motifs for GRKs (positions 226 and 230) with alanine. Mutant and wild-type receptors were expressed in cell culture models and clones expressing similar numbers of receptors were studied. We found that: (1) affinity and specificity of thromboxane A2 (TxA2) binding to mutant TP were identical to the wild-type, (2) replacement of threonines 226 and 230 with alanines delayed the onset of agonist-induced desensitization, and (3) inhibition of endogenous GRK activity with a dominant-negative construct inhibited agonist-induced phosphorylation and enhanced responsiveness of wild-type TP but had little effect on responsiveness of the receptor mutant. These data are consistent with the notion that GRKs contribute to desensitization of TP. 相似文献
18.
Characterization of the human beta -glucan receptor and its alternatively spliced isoforms 总被引:6,自引:0,他引:6
beta-1,3-d-Glucans are biological response modifiers with potent effects on the immune system. A number of receptors are thought to play a role in mediating these responses, including murine Dectin-1, which we recently identified as a beta-glucan receptor. In this study we describe the characterization of the human homologue of this receptor and show that it is structurally and functionally similar to the mouse receptor. The human beta-glucan receptor is a type II transmembrane receptor with a single extracellular carbohydrate recognition domain and an immunoreceptor tyrosine activation motif in its cytoplasmic tail. The human beta-glucan receptor is widely expressed and functions as a pattern recognition receptor, recognizing a variety of beta-1,3- and/or beta-1,6-linked glucans as well as intact yeast. In contrast to the murine receptor, the human receptor mRNA is alternatively spliced, resulting in two major (A and B) and six minor isoforms. The two major isoforms differ by the presence of a stalk region separating the carbohydrate recognition domain from the transmembrane region and are the only isoforms that are functional for beta-glucan binding. The human receptor also binds T-lymphocytes at a site distinct from the beta-glucan binding site, indicating that this receptor can recognize both endogenous and exogenous ligands. 相似文献
19.
20.
Microalgae have the potential to be a valuable biotechnological platform for the production of recombinant proteins. However, because of the complex regulatory network that tightly controls chloroplast gene expression, heterologous protein accumulation in a wild-type, photosynthetic-competent algal chloroplast remains low. High levels of heterologous protein accumulation have been achieved using the psbA promoter/5' untranslated region (UTR), but only in a psbA-deficient genetic background, because of psbA/D1-dependent auto-attenuation. Here, we examine the effect of fusing the strong 16S rRNA promoter to the 5' UTR of the psbA and atpA genes on transgene expression in the chloroplast of Chlamydomonas reinhardtii. We show that fusion of the 16S promoter had little impact on protein accumulation from the psbA 5' UTR in a psbA-deficient genetic background. Furthermore, the 16S/psbA promoter/UTR fusion was silenced in the presence of wild-type levels of D1 protein, confirming that the psbA 5' UTR is the primary target for D1-dependent auto-repression. However, fusion of the 16S promoter to the atpA 5' UTR significantly boosts mRNA levels and supports high levels of heterologous protein accumulation in photosynthetic-competent cells. The 16S/atpA promoter/UTR drove LUXCT protein accumulation to levels close to that of psbA in a psbA- background, and drove expression of a human therapeutic protein to levels only twofold lower than the psbA 5' UTR. The 16S/atpA promoter/UTR combination should have utility for heterologous protein production when expression from a photosynthetic-competent microalgal strain is required. 相似文献