首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Golléty C  Gentil F  Davoult D 《Oecologia》2008,155(1):133-142
Calcification, a process common to numerous marine taxa, has traditionally been considered to be a significant source of CO2 in tropical waters only. A number of relatively recent studies, however, have shown that significant amounts of CO2 are also produced in temperate waters, although none of these studies was carried out on rocky shores, which are considered to be very productive systems. We compared the CO2 fluxes due to respiration and calcification in two temperate species, the cirripedes Chthamalus montagui and Elminius modestus. The population dynamics of both species were estimated at two sites during a 1-year experimental period in order to establish mean organic (ash-free dry weight) and CaCO3 (dry shell weight) production. Based on these parameters, we estimated the CO2 fluxes due to respiration and calcification. CaCO3 production was estimated to be 481.0 and at each site, representing 3.4 and respectively, of released CO2. These fluxes represent each 47% of the CO2 released as a result of respiration and calcification. The production of CaCO3 at the high-density site was: (1) among the highest values obtained for temperate organisms, and (2) comparable to the estimated CO2 fluxes for coral reefs. As calcifying organisms are well represented in temperate ecosystems in terms of both density and biomass, our results provide clear evidence that calcification of temperate organisms should not be underestimated. Additional studies on other rocky shore taxa are needed before the relative importance of calcification in rocky intertidal carbon budgets can be generalized.  相似文献   

2.
Little information is known on what the magnitude of nitrogen (N) processed by ectomycorrhizal (ECM) fungal species in the field. In a common garden experiment performed in a northern California oak woodland, we investigated transfer of nitrogen applied as 15NH4 or 15NO3 from leaves to ectomycorrhizal roots of three oak species, Quercus agrifolia, Q. douglasii, and Q. garryana. Oak seedlings formed five common ectomycorrhizal morphotypes on root tips. Mycorrhizal tips were more enriched in 15N than fine roots. N transfer was greater to the less common morphotypes than to the more common types. 15N transfer from leaves to roots was greater when , not , was supplied. 15N transfer to roots was greater in seedlings of Q. agrifolia than in Q. douglasii and Q. garryana. Differential N transfer to ectomycorrhizal root tips suggests that ectomycorrhizal morphotypes can influence flows of N from leaves to roots and that mycorrhizal diversity may influence the total N requirement of plants.  相似文献   

3.
The cyanobacterium Spirulina platensis was used to verify the possibility of employing microalgal biomass to reduce the contents of nitrate and phosphate in wastewaters. Batch tests were carried out in 0.5 dm3 Erlenmeyer flasks under conditions of light limitation (40 mol quanta m–2 s–1) at a starting biomass level of 0.50 g/dm3 and varying temperature in the range 23–40°C. In this way, the best temperature for the growth of this microalga (30°C) was determined and the related thermodynamic parameters were estimated. All removed nitrate was used for biomass growth (biotic removal), whereas phosphate appeared to be removed mainly by chemical precipitation (abiotic removal). The best results in terms of specific and volumetric growth rates ( =0.044 day–1, Q x =33.2 mg dm–3 day–1) as well as volumetric rate and final yield of nitrogen removal ( =3.26 mg dm–3 day–1, =0.739) were obtained at 30°C, whereas phosphorus was more effectively removed at a lower temperature. In order to simulate full-scale studies, batch tests of nitrate and phosphate removal were also performed in 5.0 dm3 vessels (mini-ponds) at the optimum temperature (30°C) but increasing the photon fluence rate to 80 mol quanta m–2 s–1 and varying the initial biomass concentration from 0.25 to 0.86 g/dm3. These additional tests demonstrated that an increase in the inoculum level up to 0.75 g/dm3 enhanced both NO3 and PO4 3– removal, confirming a strict dependence of these processes on biomass activity. In addition, the larger surface area of the ponds and the higher light intensity improved removal yields and kinetics compared to the flasks, particularly concerning phosphorus removal ( =0.032–0.050 day–1, Q x =34.7–42.4 mg dm–3 day–1, =3.24–4.06 mg dm–3 day–1, =0.750–0.879, =0.312–0.623 mg dm–3 day–1, and =0.224–0.440).  相似文献   

4.
Photosynthetic induction times and photoinhibition in relation to simulated sunflecks (sudden increase of irradiance from 20 to 1,500 μmol m−2 s−1) were examined in leaves of co-occurring Fagus lucida (a deciduous tree) and Castanopsis lamontii (an evergreen tree) saplings grown either in a beech forest understory or in an adjacent open site during a late rainy season. Two hypotheses were tested: (1) understory leaves would display faster photosynthetic induction times and greater photoinhibition than open-grown leaves; and (2) evergreen species would have slower photosynthetic induction times and lighter photoinhibition than deciduous species. Times to reach 90% of maximal CO2 assimilation rate (t 90%A ) and stomatal conductance did not differ between species, but showed faster by 3–5 min in open-grown leaves than understory leaves due to higher initial stomatal conductance (g s initial) and induction state 1 min into simulated sunflecks (IS1min) in the former. Our analysis across the published data on photosynthetic induction of 48 broad-leaved woody species again revealed the negative correlations between t 90%A and either g s initial or IS1min, and the similarity of t 90%A and between evergreen and deciduous species. Measurements of maximum PSII photochemical efficiency (F v/F m) indicated that photoinhibition occurred in saplings in any of the growth habitats during sunfleck-induced photosynthetic induction. Despite no interspecific differences in the degree of photoinhibition, understory leaves of both species suffered heavier photoinhibition than open-grown leaves, as indicated by a stronger decrease of F v/F m in the former. Dynamic changes in the quantum yields of PSII photochemistry and ΔpH- and xanthophyll-regulated thermal dissipation and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were functional to resist photoinhibition. However, such photoinhibition, together with stomatal and biochemical limitations, would decrease carbon gain during simulated sunflecks, particularly in understory leaves.  相似文献   

5.
ADP-forming acetyl-CoA synthetase (ACD), the novel enzyme of acetate formation and energy conservation in archaea ( ), has been studied only in few hyperthermophilic euryarchaea. Here, we report the characterization of two ACDs with unique molecular and catalytic features, from the mesophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. ACD from H. marismortui was purified and characterized as a salt-dependent, mesophilic ACD of homodimeric structure (166 kDa). The encoding gene was identified in the partially sequenced genome of H. marismortui and functionally expressed in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization and refolding in the presence of salts. The ACD catalyzed the reversible ADP- and Pi-dependent conversion of acetyl-CoA to acetate. In addition to acetate, propionate, butyrate, and branched-chain acids (isobutyrate, isovalerate) were accepted as substrates, rather than the aromatic acids, phenylacetate and indol-3-acetate. In the genome of P. aerophilum, the ORFs PAE3250 and PAE 3249, which code for and subunits of an ACD, overlap each other by 1 bp, indicating a novel gene organization among identified ACDs. The two ORFs were separately expressed in E. coli and the recombinant subunits (50 kDa) and (28 kDa) were in-vitro reconstituted to an active heterooligomeric protein of high thermostability. The first crenarchaeal ACD showed the broadest substrate spectrum of all known ACDs, catalyzing the conversion of acetyl-CoA, isobutyryl-CoA, and phenylacetyl-CoA at high rates. In contrast, the conversion of phenylacetyl-CoA in euryarchaeota is catalyzed by specific ACD isoenzymes.Dedicated to Prof. Dr. Dr. h.c. mult. Hans Günter Schlegel on the occasion of his 80th birthday.  相似文献   

6.
Hairy root cultures of Gentiana macrophylla were established by infecting the different explants four Agrobacterium rhizogenes strains namely A4GUS, R1000, LBA 9402 and ATCC11325, and hairy root lines were established with A. rhizogenes strain R1000 in 1/2 MS + B5 medium. Initially, 42 independent hairy root clones were maintained and seven clones belongs to different category were evaluated for growth, morphology, integration and expression of Ri T-DNA genes, and alkaloid contents in dry root samples. On the basis of total root elongation, lateral root density and biomass accumulation on solid media, hairy root clones were separated into three categories. PCR and Southern hybridization analysis revealed both left and right T-DNA integration in the root clones and RT-PCR analysis confirmed the expression of hairy root inducible gene. GUS assay was also performed to confirm the integration of left T-DNA. The accumulation of considerable amounts of the root-specific secoiridoid glucosides gentiopicroside was observed in GM1 ( and ) and the GM2 ( and DNA) type clones in considerably higher amount whether as two but callus-type clones (GM3) accumulated much less or only very negligible amounts of gentiopicroside. Out of four media composition the 1/2 MS + B5 vitamin media was found most suitable. We found that initial establishment of root cultures largely depends on root:media ratio. Maximum growth rate was recorded in 1:50 root:media ratio. The maximum biomass in terms of fresh weight (33-fold) was achieved in 1/2 MS + B5 media composition after 35 days in comparison to sixfold increase in control. The biomass increase was most abundant maximum from 15 to 30 days. Influence of A. rhizogenes strains and Ri plasmid of hairy root induction, the possible role of the TL-DNA and TR-DNA genes on growth pattern of hairy root, initial root inoculum:media ratio and effect of media composition is discussed.  相似文献   

7.
8.
The recombinant invertase INVB (re-INVB) from Zymomonas mobilis was immobilized on microbeads of Nylon-6, by means of covalent bonding. The enzyme was strongly and successfully bound to the support. The activity of the free and immobilized enzyme was determined, using 10% (w/v) sucrose, at a temperature ranging between 15 and 60 °C and a pH ranging between 3.5 and 7. The optimal pH and temperature for the immobilized enzyme were 5.5 and 25 °C, respectively. Immobilization of re-INVB on Nylon-6 showed no significant change in the optimal pH, but a difference in the optimal temperature was evident, as that for the free enzyme was shown to be 40 °C. The values for kinetic parameters were determined as: 984 and 98 mM for of immobilized and free re-INVB, respectively. values for immobilized and free enzymes were 6.1 × 102 and 1.2 × 104 s−1, respectively, and immobilized re-INVB showed of 158.73 μmol h min−1 mg−1. Immobilization of re-INVB on Nylon-6 enhanced the thermostability of the enzyme by 50% at 30 °C and 70% at 40 °C, when compared to the free enzyme. The immobilization system reported here may have future biotechnological applications, owing to the simplicity of the immobilization technique, the strong binding of re-INVB to the support and the effective thermostability of the enzyme.  相似文献   

9.
The FDH1 gene of Candida boidinii encodes an NAD+-dependent formate dehydrogenase, which catalyzes the last reaction in the methanol dissimilation pathway. FDH1 expression is strongly induced by methanol, as are the promoters of the genes AOD1 (alcohol oxidase) and DAS1 (dihydroxyacetone synthase). FDH1 expression can be induced by formate when cells are grown on a medium containing glucose as a carbon source, whereas expression of AOD1 and DAS1 is completely repressed in the presence of glucose. Using deletion analyses, we identified two cis-acting regulatory elements, termed UAS-FM and UAS-M, respectively, in the 5 non-coding region of the FDH1 gene. Both elements were necessary for full induction of the FDH1 promoter by methanol, while only the UAS-FM element was required for full induction by formate. Irrespective of whether induction was achieved with methanol or formate, the UAS-FM element enhanced the level of induction of the FDH1 promoter in a manner dependent on the number of copies, but independent of their orientation, and also converted the ACT1 promoter from a constitutive into an inducible element. Our results not only provide a powerful promoter for heterologous gene expression, but also yield insights into the mechanism of regulation of FDH1 expression at the molecular level.Communicated by C. P. Hollenberg  相似文献   

10.
S-Adenosylmethionine (SAM) is synthesized via the metabolic reaction involving adenosine triphosphate and l-methionine that is catalyzed by the enzyme S-adenosyl-l-methionine synthetase (SAM-s) and encoded by the gene metK. In the present study, metK with the absence of introns from Saccharomyces cerevisiae was introduced into Streptomyces actuosus, a nosiheptide (Nsh) producer. Intracellular SAM levels were determined by high-pressure liquid chromatography. Through optimizing the nutrient content of the medium, it was shown that increased SAM production induced by the overexpression of SAM-s leads to an increase in the intracellular cysteine pool and overproduction of Nsh in S. actuosus. This investigation shows that increased SAM promotes the elevated production of the non-ribosomal thiopeptide Nsh in Streptomyces sp.  相似文献   

11.
Ye Q  Holbrook NM  Zwieniecki MA 《Planta》2008,227(6):1311-1319
A steady supply of water is indispensable for leaves to fulfil their photosynthetic function. Understanding water movement in leaves, especially factors that regulate the movement of water flux from xylem to epidermis, requires that the nature of the transport pathway be elucidated. To determine the hydraulic linkage between xylem and epidermis, epidermal cell turgor pressure (P t) in leaves of Tradescantia fluminensis was monitored using a cell pressure probe in response to a 0.2 MPa step change in xylem pressure applied at the leaf petiole. Halftime of P t changes were 10–30 times greater than that of water exchange across an individual cell membrane suggesting that cell-to-cell water transport constitutes a significant part of the leaf hydraulic path from xylem to epidermis. Furthermore, perfusion of H2O2 resulted in increases of both and by a factor of 2.5, indicating that aquaporins may play a role in the xylem to epidermis hydraulic link. The halftime for water exchange did not differ significantly between cells located at the leaf base (2.5 s), middle (2.6 s) and tip (2.5 s), indicating that epidermal cell hydraulic properties are similar along the length of the leaf. Following the pressure application to the xylem (0.2 MPa), P t changed by 0.12, 0.06 and 0.04 MPa for epidermal cells at the base, middle and the tip of the leaf, respectively. This suggests that pressure dissipation between xylem and epidermis is significant, and that the pressure drop along the vein may be due to its structural similarities to a porous pipe, an idea which was further supported by measurements of xylem hydraulic resistance using a perfusion technique.  相似文献   

12.
Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O2), while no visible colonies were formed in the absence of O2. However, in the presence of nitrate (), the organism exhibited limited growth anaerobically with production of nitrite (), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using l-lysine- and l-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.  相似文献   

13.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

14.
Experiments were performed to optimize the macronutrients concentrations for in vitro rooting of Ceratonia siliqua micropropagated shoots. Several dilutions of Murashige and Skoog (MS) medium were tested: full-strength MS, half-strength MS ( MS), and MS + full N. The frequency of in vitro rooting was enhanced when the MS was used (50 % rooted shoots). Mature leaves from 20 – 30 year-old carob trees and from 2 year-old micropropagated plants were collected and the concentrations of macronutrients (N, P, K, Ca, Mg) assessed. Based on the mineral composition of the leaves a new medium was formulated and compared with the previous ones showing an increment of the rooting frequency to 80 %. Moreover, shoots rooted in the new medium did not show symptoms of apical necrosis that occurred in the other tested media.  相似文献   

15.
Fructosyl-amino acid oxidase (FOD-F) from Fusarium oxysporum f. sp. raphani (NBRC 9972) is the enzyme catalyzing the oxidative deglycation of fructosyl-amino acids such as -fructosyl -benzyloxycarbonyl-lysine (FZK) and fructosyl valine (FV), which are model compounds of the glycated proteins in blood. Wild-type FOD-F has high activities toward both substrates. We obtained a mutant FOD-F, which reacts with FZK but not with FV by random mutagenesis. One amino-acid substitution (K373R) occurred in the mutant FOD-F. In addition to K373R, K373W, K373M, K373T, and K373V, which were selected for optimization of the substitution at position K373, were purified and characterized. Kinetic analysis showed that the catalytic turnover for FV greatly decreased, whereas that for FZK did not. In consequence, the specificities toward FZK were increased in the mutant FOD-Fs. The relation between the substrate specificity of the mutant FOD-Fs and the position of the carboxyl group of the substrates was demonstrated using a series of the substrates having the carboxyl group at the different position. The mutant FOD-Fs are attractive candidates for developing an enzymatic measurement method for glycated proteins such as glycated albumin in serum. This study will be helpful to establish an easier and rapid clinical assay system of glycated albumin.  相似文献   

16.
Others have shown that exposing oocytes to high levels of (10–20 mM) causes a paradoxical fall in intracellular pH (pHi), whereas low levels (e.g., 0.5 mM) cause little pHi change. Here we monitored pHi and extracellular surface pH (pHS) while exposing oocytes to 5 or 0.5 mM NH3/NH4 +. We confirm that 5 mM causes a paradoxical pHi fall (−ΔpHi ≅ 0.2), but also observe an abrupt pHS fall (−ΔpHS ≅ 0.2)—indicative of NH3 influx—followed by a slow decay. Reducing [NH3/NH4 +] to 0.5 mM minimizes pHi changes but maintains pHS changes at a reduced magnitude. Expressing AmtB (bacterial Rh homologue) exaggerates −ΔpHS at both levels. During removal of 0.5 or 5 mM NH3/NH4 +, failure of pHS to markedly overshoot bulk extracellular pH implies little NH3 efflux and, thus, little free cytosolic NH3/NH4 +. A new analysis of the effects of NH3 vs. NH4 + fluxes on pHS and pHi indicates that (a) NH3 rather than NH4 + fluxes dominate pHi and pHS changes and (b) oocytes dispose of most incoming NH3. NMR studies of oocytes exposed to 15N-labeled show no significant formation of glutamine but substantial accumulation in what is likely an acid intracellular compartment. In conclusion, parallel measurements of pHi and pHS demonstrate that NH3 flows across the plasma membrane and provide new insights into how a protein molecule in the plasma membrane—AmtB—enhances the flux of a gas across a biological membrane.
Walter F. Boron (Corresponding author)Email:
  相似文献   

17.
Diatoms in the Southern Ocean are limited by iron and light, and therefore produce little biomass. Sufficient biomass for analysis under these conditions requires large sample volumes, and diatom samples are therefore often pre-concentrated on a filter. A method for the digestion of diatom cells on polycarbonate filters, that is also suitable for trace metal analysis, is described here. Additional analysis by inductively coupled plasma-optical emission spectroscopy (ICP-OES) is used for the determination of biogenic silicon. Although several procedures were tested, the method of Hauptkorn et al., which uses tetramethylammonium hydroxide for the destruction of silicon is adapted here [Hauptkorn et al. (2001) Fres J Anal Chem 370:246–250]. Additional nitric acid is added to destroy the polycarbonate filters. The described method results in clear digests and a good correlation between cell numbers and silicon content. Using this procedure, the cellular silicon content for Chaetoceros brevis was determined as 86 ± 4 fmol cell−1. For Thalassiosira sp. a sensitivity effect was observed, and silicon content was determined as . The obtained cellular silicon contents are in good agreement with values presented in the literature.  相似文献   

18.
Less than a decade after being observed off Florida, the invasive Indo-Pacific lionfish is now widely distributed off the southeast coast of the United States. As a step towards measuring invasion impacts to native communities, we examine the magnitude and extent of this invasion by first, compiling reports of lionfish to provide range information and second, estimate lionfish abundance from two separate studies. We also estimate native grouper (epinepheline serranids) abundance to better assess and compare lionfish abundances. In the first study we conducted SCUBA diver visual transect surveys at 17 different locations off the North Carolina coast in water depths of 35–50 m. In the second study, we conducted 27 Remote Operated Vehicle (ROV) transect surveys at five locations from Florida to North Carolina in water depths of 50–100 m. In both studies, lionfish were found to be second in abundance only to scamp (Mycteroperca phenax). Lionfish were found in higher abundance in the shallower North Carolina SCUBA surveys ( ha−1) than in the deep water ROV surveys ( ha−1). Lionfish reports continue to expand most recently into the Bahamas, raising the specter of further spread into the Caribbean and Gulf of Mexico. The potential impacts of lionfish to native communities are likely to be through direct predation, competition and overcrowding. The high number of lionfish present in the ecosystem increases the potential for cascading impacts throughout the food chain. Within the southeast region the combined effects of climate change, overfishing and invasive species may have irreversible consequences to native communities in this region. An erratum to this article can be found at  相似文献   

19.
The 5 regulatory region of the cbh2 gene of Hypocrea jecorina contains the cbh2 activating element (CAE) which is essential for induction of cbh2 gene expression by sophorose and cellulose. The CAE consists of two motifs, a CCAAT box on the template strand and a GTAATA box on the coding strand, which cooperate during induction. Northern analyses of cbh2 gene expression has revealed an absolute dependence on induction, but no direct effect of Cre1-mediated carbon catabolite repression. Investigation of the chromatin structure in the wild-type strain showed that, under repressing conditions, there is a nucleosome free region (nfr) around the CAE, which is flanked by strictly positioned nucleosomes. Induction results in a loss of positioning of nucleosomes –1 and –2 downstream of the CAE, thus making the TATA box accessible. Simultaneous mutation of both motifs of the CAE, or of the CCAAT-box alone, also leads to shifting of nucleosome –1, which normally covers the TATA-box under repressing conditions, whereas mutation of the GTAATA element results in a narrowing of the nfr, indicating that the proteins that bind to both motifs in the CAE interact with chromatin, although in different ways. A cellulase-negative mutant strain, which has previously been shown to be altered in protein binding to the CAE, still displayed the induction-specific changes in nucleosome structure, indicating that none of the proteins that directly interact with CAE are affected, and that nucleosome rearrangement and induction of cbh2 expression are uncoupled. Interestingly, the carbon catabolite repressor Cre1 is essential for strict nucleosome positioning in the 5 regulatory sequences of cbh2 under all of the conditions tested, and induction can occur in a promoter that lacks positioned nucleosomes. These data suggest that Cre1, the Hap2/3/5 complex and the GTAATA-binding protein are all involved in nucleosome assembly on the cbh2 promoter, and that the latter two respond to inducing conditions by repositioning nucleosome –1.Communicated by C. A. M. J. J. van den Hondel  相似文献   

20.
The KgmB methylase (the kanamycin–gentamicin resistance methylase from Streptomyces tenebrarius) acts at G-1405 of 16S rRNA within the sequence CGUCA that is also found 6 bp in front of ribosomal binding site of the kgmB gene. The kgmBlacZ gene and operon fusions were used in order to test for translational autoregulation of kgmB gene. Overexpression of kgmB either in cis or in trans drastically decreased the level of expression of the fusion protein. However, mutagenesis eliminated any role for the CGUCA sequence in translational autoregulation. Hence, the role of second putative regulatory sequence (CGCCC) that was shown to be involved in regulation of another methylase, Sgm (sisomicin–gentamicin methylase gene from Micromonospora zionensis) was examined. It was shown that the Sgm methylase can also decrease the level of expression of the kgmBlacZ fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号