首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The varicella-zoster virus (VZV) open reading frame 62 encodes an immediate-early protein (IE62) that transactivates expression of various VZV promoters and autoregulates its own expression in transient expression assays. In Vero cells, IE62 was shown to transactivate the expression of all putative immediate-early (IE) and early (E) genes of VZV with an up-regulating effect at low intracellular concentrations. To define the functional domains involved in the regulatory properties of IE62, a large number of in-frame insertions and deletions were introduced into a plasmid-borne copy of the gene encoding IE62. Studies of the regulatory activities of the resultant mutant polypeptides in transient expression assays allowed to delineate protein regions important for repression of its own promoter and for transactivation of a VZV putative immediate-early gene (ORF61) promoter and an early gene (ORF29) promoter. This mutational analysis resulted in the identification of a new functional domain situated at the border between regions 4 and 5 which plays a crucial role in the IE62 regulatory functions. This domain turned out to be very well conserved amongst homologous alphaherpesvirus regulatory proteins and appeared to be rich in bulky hydrophobic and proline residues, similar to the proline-rich region of the CAAT box binding protein CTF-1. By immunofluorescence, a nuclear localization signal has been mapped in region 3.  相似文献   

2.
3.
4.
5.
6.
7.
Varicella-zoster virus (VZV), an alphaherpesvirus restricted to humans, infects differentiated cells in vivo, including T lymphocytes, keratinocytes, and neurons, and spreads rapidly in confluent cultured dermal fibroblasts (HFFs). In VZV-infected HFFs, atypical expression of cyclins D3 and B1 occurs along with the induction of cyclin-dependent kinase (CDK) activity. A specific CDK1 inhibitor blocked VZV spread, indicating an important function for this cellular kinase in VZV replication. CDK activity assays of infected cells revealed a large viral phosphoprotein that was identified as being the major immediate-early transactivator, IE62. Since IE62 colocalized with CDK1/cyclin B1 by confocal microscopy, we investigated whether this cellular kinase complex interacts with IE62. Using recombinant fragments of IE62 spanning the entire amino acid sequence, we found that purified CDK1/cyclin B1 phosphorylated IE62 at residues T10, S245, and T680 in vitro. Immunoprecipitation of cyclin B1 from VZV-infected HFFs indicated that IE62 was included in the complex within infected cells. The full-length IE62 protein, obtained by immunoprecipitation from infected cells, was also phosphorylated by purified CDK1/cyclin B1. Based on IE62/CDK1/cyclin B1 colocalization near viral assembly regions, we hypothesized that these cellular proteins could be incorporated into VZV virions with IE62. Purified virions were analyzed by immunoblotting for the presence of CDK1 and cyclin B1, and active CDK1 and cyclin B1 were present in the VZV tegument with IE62 and were sensitive to detergent treatment. Thus, IE62 is a substrate for CDK1/cyclin B1, and virions could deliver the active cellular kinase to nondividing cells that normally do not express it.  相似文献   

8.
Sato B  Sommer M  Ito H  Arvin AM 《Journal of virology》2003,77(22):12369-12372
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes two diseases, chickenpox and zoster. VZV open reading frame 4 (ORF4) encodes the immediate-early 4 (IE4) protein, which is conserved among alphaherpesvirus and has transactivation activity in transient transfections. To determine whether the ORF4 gene product is essential for viral replication, we used VZV cosmids to remove ORF4 from the VZV genome. Deleting ORF4 was incompatible with recovery of infectious virus, whereas transfections done by using repaired cosmids with ORF4 inserted at a nonnative site yielded virus. To analyze the functional domain of IE4, we introduced a mutation altering the C-terminal amino acids, KYFKC (K443S), which was designed to disrupt the dimerization of IE4 protein. Transfections with these mutant cosmids yielded no virus, indicating that this KYFKC motif was essential for IE4 function.  相似文献   

9.
The IE62 protein, the primary regulatory protein of varicella-zoster virus (VZV) and the major component of the virion tegument, was an effective immunogen in the guinea pig model of VZV infection, whereas the ORF 29 gene product, a nonstructural DNA replication protein, did not elicit protection. All animals immunized with the ORF 29 protein had cell-associated viremia compared with 2 of 11 guinea pigs given the IE62 protein (P = 0.005). VZV was detected in ganglia from 38% of the animals given the ORF 29 protein and 44% of the control animals compared with 9% of the animals immunized with the IE62 protein (P = 0.04). In contrast to the IE62 protein, immunization with the ORF 29 protein did not prime the animals for an enhanced T-cell response upon challenge with infectious virus. The VZV IE62 protein has potential value as a vaccine component.  相似文献   

10.
11.
We previously constructed a recombinant monoclonal antibody (rec-MAb 63P4) that detects immediate-early protein IE63 encoded by varicella-zoster virus (VZV) in the cytoplasm of productively infected cells. Here, we used ORF63 truncation mutants to map the rec-MAb 63P4 binding epitope to amino acids 141 to 150 of VZV IE63, a region not shared with other widely used anti-IE63 antibodies, and found that the recombinant antibody does not bind to the simian IE63 counterpart.  相似文献   

12.
13.
The varicella-zoster virus (VZV) genome has unique long (U(L)) and unique short (U(S)) segments which are flanked by internal repeat (IR) and terminal repeat (TR) sequences. The immediate-early 62 (IE62) protein, encoded by open reading frame 62 (ORF62) and ORF71 in these repeats, is the major VZV transactivating protein. Mutational analyses were done with VZV cosmids generated from parent Oka (pOka), a low-passage clinical isolate, and repair experiments were done with ORF62 from pOka and vaccine Oka (vOka), which is derived from pOka. Transfections using VZV cosmids from which ORF62, ORF71, or the ORF62/71 gene pair was deleted showed that VZV replication required at least one copy of ORF62. The insertion of ORF62 from pOka or vOka into a nonnative site in U(S) allowed VZV replication in cell culture in vitro, although the plaque size and yields of infectious virus were decreased. Targeted mutations in binding sites reported to affect interaction with IE4 protein and a putative ORF9 protein binding site were not lethal. Single deletions of ORF62 or ORF71 from cosmids permitted recovery of infectious virus, but recombination events repaired the defective repeat region in some progeny viruses, as verified by PCR and Southern hybridization. VZV infectivity in skin xenografts in the SCID-hu model required ORF62 expression; mixtures of single-copy recombinant Oka Delta 62 (rOka Delta 62) or rOka Delta 71 and repaired rOka generated by recombination of the single-copy deletion mutants were detected in some skin implants. Although insertion of ORF62 into the nonnative site permitted replication in cell culture, ORF62 expression from its native site was necessary for cell-cell spread in differentiated human skin tissues in vivo.  相似文献   

14.
Lu L  Liqun L  Rivkin H  Chejanovsky N 《Journal of virology》2005,79(15):10077-10082
The role of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) immediate-early protein IE0 in the baculoviral infection is not clear. In this study, we constructed the recombinant virus vAcDeltaie0 null for ie0 expression by targeted mutagenesis replacing exon0 with the cat gene. We found that vAcDeltaie0 replicated efficiently in Spodoptera littoralis SL2 cells, which are poorly permissive for AcMNPV. In contrast, in Spodoptera frugiperda SF9 cells, which are fully permissive for AcMNPV, vAcDeltaie0 DNA replication and budded virus production were delayed. These results and recently published data (X. Dai et al., J. Virol. 78:9633-9644, 2004) indicate that ie0 is not essential for AcMNPV replication but enhances it in permissive SF9 cells.  相似文献   

15.
16.
17.
18.
We have isolated and partially characterized a major intranuclear matrix polypeptide from rat liver. This polypeptide, which is reversibly stabilized into the intranuclear matrix under conditions which promote intermolecular disulfide bond formation, has a Mr of 62,000 and pI of 6.8-7.2 as determined by two-dimensional IEF/SDS-PAGE. A chicken polyclonal antiserum was raised against the polypeptide purified from two-dimensional polyacrylamide gels. Affinity-purified anti-62-kD IgG was prepared and used to immunolocalize this polypeptide in rat liver tissue hepatocytes. In interphase hepatocytes the 62-kD antigen is localized in small, discrete patches within the nucleus consistent with the distribution of chromatin. The staining is most prominent at the nuclear periphery and somewhat less dense in the nuclear interior. Nucleoli and cytoplasm are devoid of staining. During mitosis the 62-kD antigen localizes to the condensed chromosomes with no apparent staining of cytoplasmic areas. The chromosomal staining during mitosis is uniform with no suggestion of the patching seen in interphase nuclei. Fractionation and immunoblotting studies using rat hepatoma tissue culture cells blocked in metaphase with colcemid confirm the chromosomal localization of this 62-kD intranuclear protein during mitosis. The 62-kD polypeptide fractionates completely with metaphase chromosome scaffolds generated by sequential treatment of isolated chromosomes with DNAse I and 1.6 M NaCl, suggesting that this major 62-kD intranuclear protein may be involved in maintaining metaphase chromosomal architecture.  相似文献   

19.
20.
Yang M  Hay J  Ruyechan WT 《Journal of virology》2008,82(24):12154-12163
The varicella-zoster virus (VZV) major transactivator, IE62, is involved in the expression of all kinetic classes of VZV genes and can also activate cellular promoters, promoters from heterologous viruses, and artificial promoters containing only TATA elements. A key component of the mechanism of IE62 transactivation is an acidic activation domain comprising the N-terminal 86 amino acids of IE62. However, the cellular target of this N-terminal acidic activation is unknown. In the work presented here, we show that the IE62 activation domain targets the human Mediator complex via the Med25 (ARC92) subunit and that this interaction appears to be fundamental for transactivation by the IE62 activation domain. In contrast, the Med23 subunit (Sur2/TRAP150beta/DRIP130/CRSP130) of the Mediator complex is not essential for IE62-mediated activation. Further, the IE62 activation domain appears to selectively interact with a form of the Mediator complex lacking CDK8. Chromatin immunoprecipitation experiments showed that IE62 stimulates recruitment of Mediator to an IE62-responsive model promoter. Finally, immunofluorescence microscopy of VZV-infected cells demonstrated intranuclear translocation of the Mediator complex to viral replication compartments. These studies suggest that Mediator is an essential component for efficient VZV gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号