首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical investigations have identified putative enzymatic pathways for the synthesis and metabolism of endogenous cannabinoids. Anandamide amidase is an enzyme that metabolizes anandamide into arachadonic acid and ethanolamine. Using in vitro methods, various inhibitors of amidase have been identified. The present studies were undertaken to determine if the amidase inhibitor AM 374 could enhance the effects of intraperitoneal (IP) injections of anandamide. Three studies were conducted to investigate the effects of various drug treatments on fixed ratio 5 operant lever pressing for food reinforcement. In the first study, the effects of different doses of anandamide were assessed, and it was demonstrated that 5.0 and 10.0 mg/kg anandamide IP significantly suppressed lever pressing, while 2.5 mg/kg produced very little effect. The second study tested the effects of intraventricular (ICV) injections of AM 374, and it was observed that doses up to 10.0, 20.0 and 40 microg AM 374 had no significant effect upon lever pressing. The third study investigated the combined effect of AM374 with a low dose of anandamide. Rats received two drug injections: one ICV and one IP. Four different drug treatments were assessed: 1) ICV vehicle + IP vehicle, 2) ICV vehicle + 2.5 mg/kg anandamide IP, 3) ICV 20.0 microg AM 374 + IP vehicle, and 4) ICV 20 microg AM 374 + 2.5 mg/kg anandamide IP. Combined administration of AM 374 plus anandamide led to a significant decrease in lever pressing compared to either AM374 or anandamide administered alone. Observations of the animals treated with the combination of AM374 plus anandamide indicated that the drug combination resulted in motor slowing, which is consistent with the notion that stimulation of cannabinoid receptors produced a motor deficit that interfered with lever pressing. Although AM374 produced no effect on its own, this amidase inhibitor did enhance the behavioral effect of a low dose of anandamide. These results are consistent with the notion that AM 374 inhibited the enzymatic breakdown of exogenously injected anandamide. This type of procedure can be used to assess a variety of different compounds for their ability to inhibit cannabinoid metabolism.  相似文献   

2.
3.
The medicinal properties of exogenous cannabinoids have been recognized for centuries and can largely be attributed to the activation in the nervous system of a single G-protein-coupled receptor, CB1. However, the beneficial properties of cannabinoids, which include relief of pain and spasticity, are counterbalanced by adverse effects such as cognitive and motor dysfunction. The recent discoveries of anandamide, a natural lipid ligand for CB1, and an enzyme, fatty acid amide hydrolase (FAAH), that terminates anandamide signaling have inspired pharmacological strategies to augment endogenous cannabinoid ('endocannabinoid') activity with FAAH inhibitors, which might exhibit superior selectivity in their elicited behavioral effects compared with direct CB1 agonists.  相似文献   

4.
We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N -(4-hydrophenyl) arachidonoylamide (AM404; 3 mg/kg) potentiated ethanol effects on 2-arachidonoylglycerol levels but did not alter ethanol-induced decreases in anandamide. AM404 alone did not alter dialysate levels of either endocannabinoid. Then, we characterized the effect of ethanol challenge on nucleus accumbens endocannabinoid levels in rats previously maintained on an ethanol-containing liquid diet. Ethanol challenge produced a greater and more prolonged increase in 2-arachidonoylglycerol (to a maximum 394 ± 135% of baseline) in ethanol-experienced than in ethanol-naïve rats. The profile in ethanol-experienced rats was similar to that produced by AM404 pre-treatment in ethanol-naïve rats. AM404 in ethanol-experienced rats led to a further enhancement in the 2-arachidonoylglycerol response to ethanol challenge (to a maximum 704 ± 174% of baseline). Our findings demonstrate that ethanol-induced increases in nucleus accumbens 2-arachidonoylglycerol are potentiated in animals with a history of ethanol consumption.  相似文献   

5.
Modulation of anxiety through blockade of anandamide hydrolysis   总被引:22,自引:0,他引:22  
The psychoactive constituent of cannabis, Delta(9)-tetrahydrocannabinol, produces in humans subjective responses mediated by CB1 cannabinoid receptors, indicating that endogenous cannabinoids may contribute to the control of emotion. But the variable effects of Delta(9)-tetrahydrocannabinol obscure the interpretation of these results and limit the therapeutic potential of direct cannabinoid agonists. An alternative approach may be to develop drugs that amplify the effects of endogenous cannabinoids by preventing their inactivation. Here we describe a class of potent, selective and systemically active inhibitors of fatty acid amide hydrolase, the enzyme responsible for the degradation of the endogenous cannabinoid anandamide. Like clinically used anti-anxiety drugs, in rats the inhibitors exhibit benzodiazepine-like properties in the elevated zero-maze test and suppress isolation-induced vocalizations. These effects are accompanied by augmented brain levels of anandamide and are prevented by CB1 receptor blockade. Our results indicate that anandamide participates in the modulation of emotional states and point to fatty acid amide hydrolase inhibition as an innovative approach to anti-anxiety therapy.  相似文献   

6.
Low-voltage-activated or T-type Ca(2+) channels (T-channels) are widely expressed, especially in the central nervous system where they contribute to pacemaker activities and are involved in the pathogenesis of epilepsy. Proper elucidation of their cellular functions has been hampered by the lack of selective pharmacology as well as the absence of generic endogenous regulations. We report here that both cloned (alpha(1G), alpha(1H) and alpha(1I) subunits) and native T-channels are blocked by the endogenous cannabinoid, anandamide. Anandamide, known to exert its physiological effects through cannabinoid receptors, inhibits T-currents independently from the activation of CB1/CB2 receptors, G-proteins, phospholipases and protein kinase pathways. Anandamide appears to be the first endogenous ligand acting directly on T-channels at submicromolar concentrations. Block of anandamide membrane transport by AM404 prevents T-current inhibition, suggesting that anandamide acts intracellularly. Anandamide preferentially binds and stabilizes T-channels in the inactivated state and is responsible for a significant decrease of T-currents associated with neuronal firing activities. Our data demonstrate that anandamide inhibition of T-channels can regulate neuronal excitability and account for CB receptor-independent effects of this signaling molecule.  相似文献   

7.
Although it had been suggested that prolactin (PRL) modulates the dopaminergic receptor sensitivity in extrahypothalamic areas, recent studies have questioned this role. We studied the effects of PRL on the receptor sensitivity in the striatum and the limbic forebrain, analyzing the number of D1 and D2 receptors and the amount of their second messenger, cyclic-adenosine monophosphate (cAMP). Tyrosine hydroxylase (TH) activity and dopamine (DA) and L-3,4-dihydroxyphenylacetic acid (DOPAC) content were also measured as indices of presynaptic activity. The study was carried out in male rats submitted to either acute (PRL injection) or chronic (pituitary grafts or diethylstilbestrol (DES)-induced pituitary tumors) rises of plasma PRL levels. The results showed a common lack of effect of PRL on the dopaminergic receptor sensitivity in both brain areas and, only some few effects on presynaptic activity in the striatum. Thus, grafted rats showed a slight decrease in DA content in the striatum, but neither D1 and D2 receptor number and cAMP content nor DOPAC content and TH activity, were modified, whereas DES animals exhibited no changes in all the parameters studied. A single injection of ovine PRL caused a decrease in DOPAC content and an increase in TH activity in the striatum. In the case of the limbic area, both chronic and acute hyperprolactinemia failed to alter any of the indices studied. In summary, we cannot support the view that PRL plays a role as modulator of dopaminergic receptor sensitivity. The only effects were always produced at the presynaptic level on the striatum, and after acute treatment, which supports the possible development of tolerance after chronic changes in peripheral PRL levels.  相似文献   

8.
Abstract: Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as Δ9-tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination, systems that all depend on NMDA receptor mediated neurotransmission. We investigated whether anandamide can influence NMDA receptor activity by examining NMDA-induced calcium flux (ΔCa2+NMDA) in rat brain slices. The presence of anandamide reduced ΔCa2+NMDA and the inhibition was disrupted by cannabinoid receptor antagonist, pertussis toxin treatment, and agatoxin (a calcium channel inhibitor). Whereas these treatments prevented anandamide inhibiting ΔCa2+NMDA, they also revealed another, underlying mechanism by which anandamide influences ΔCa2+NMDA. In the presence of cannabinoid receptor antagonist, anandamide potentiated ΔCa2+NMDA in cortical, cerebellar, and hippocampal slices. Anandamide (but not THC) also augmented NMDA-stimulated currents in Xenopus oocytes expressing cloned NMDA receptors, suggesting a capacity to directly modulate NMDA receptor activity. In a similar manner, anandamide enhanced neurotransmission across NMDA receptor-dependent synapses in hippocampus in a manner that was not mimicked by THC and was unaffected by cannabinoid receptor antagonist. These data demonstrate that anandamide can modulate NMDA receptor activity in addition to its role as a cannabinoid receptor ligand.  相似文献   

9.
Effects of cannabinoids on endogenous potassium and calcium currents in HEK293 cells were studied using the whole-cell variant of the patch-clamp technique. The cannabinoid agonists WIN 55,212-2, methanandamide, and anandamide (1 microM) decreased the calcium current by 53.1 +/- 2.6, 47.5 +/- 1.2, and 38.8 +/- 3.1%, respectively, after transfection of human CB1 cannabinoid receptor (hCB1) cDNA into HEK293 cells. The delayed rectifier-like current was not changed after application of these agonists, but the inward rectifier was increased by 94.0 +/- 3.6, 83.7 +/- 5.1, and 63.0 +/- 2.5% after application of WIN 55,212-2, methanandamide, and anandamide, respectively. The effects of the cannabinoid antagonists (AM251, AM281, and AM630) on the inward rectifier and calcium currents were the opposite of those seen with cannabinoid agonists; thus, these compounds act as inverse agonists in this preparation. These results suggest that endogenous inward rectifier and calcium currents are modulated by cannabinoids in HEK293 cells, and that some expressed receptors may be constitutively active.  相似文献   

10.
Compounds blocking the uptake of the endogenous cannabinoid anandamide (AEA) have been used to explore the functions of the endogenous cannabinoid system in the CNS both in vivo and in vitro. In this study, the effects of four commonly used acyl-based uptake inhibitors [N-(4-hydroxyphenyl)arachidonylamide (AM404), N-(4-hydroxy-2-methylphenyl) arachidonoyl amide (VDM11), (5Z,8Z,11Z,14Z)-N-(3-furanylmethyl)-5,8,11,14-eicosatetraenamide (UCM707) and (9Z)-N-[1-((R)-4-hydroxybenzyl)-2-hydroxyethyl]-9-octadecen-amide (OMDM2)] and the related compound arvanil on C6 glioma cell viability were investigated. All five compounds reduced the ability of the cells to accumulate calcein, reduced the total nucleic acid content and increased the activity of lactate dehydrogenase recovered in the cell medium. AM404 (10 microm) and VDM11 (10 microm) acted rapidly, reducing cell viability after 3 h of exposure when cell densities of 5,000 per well were used. In contrast, UCM707 (30 microm), OMDM2 (10 microm) and the related compound arvanil (10 microm) produced a more slowly developing effect on cell viability, although robust effects were seen after 6-9 h of exposure. At higher cell densities, the toxicities of AM404 and UCM707 were reduced. Comparison of the compounds with arachidonic acid, arachidonic acid methyl ester, AEA, arachidonoyl glycine and oleic acid suggested that the toxicity of the arachidonoyl-based compounds was related primarily to the acyl side-chain rather than the head group. A variety of pre-treatments blocking possible metabolic pathways and receptor targets were tested, but the only consistent protective treatment against the effects of these compounds was the antioxidant N-acetyl-L-cysteine. It is concluded that AM404, VDM11, UCM707 and OMDM2 produce a rapid loss of C6 glioma cell viability over the same concentration range as is required for the inhibition of AEA uptake in vitro, albeit with a longer latency. Such effects should be kept in mind when acyl-derived compounds are used to probe the function of the endocannabinoid system in the CNS, particularly in chronic administration protocols.  相似文献   

11.
Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB(1) receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB(1) receptors modulate baroreflex activity. We found that bilateral microinjection of the CB(1) receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB(1) receptors, which modulate local glutamate release.  相似文献   

12.
We have recently reported that the administration of AM404, an inhibitor of the endocannabinoid re-uptake process, which also has affinity for the vanilloid VR1 receptors, is able to reduce hyperkinesia, and causes recovery from neurochemical deficits, in a rat model of Huntington's disease (HD) generated by bilateral intrastriatal injections of 3-nitropropionic acid (3NP). In the present study, we wanted to explore the mechanism(s) by which AM404 produces its antihyperkinetic effect in 3NP-lesioned rats by employing several experimental approaches. First, we tried to block the effects of AM404 with selective antagonists for the CB1 or VR1 receptors, i.e. SR141716A and capsazepine, respectively. We found that the reduction caused by AM404 of the increased ambulation exhibited by 3NP-lesioned rats in the open-field test was reversed when the animals had been pre-treated with capsazepine but not with SR141716A, thus suggesting a major role of VR1 receptors in the antihyperkinetic effects of AM404. However, despite the lack of behavioral effects of the CB1 receptor antagonist, the pretreatment with this compound abolished the recovery of neurochemical [gamma-aminobutyric acid (GABA) and dopamine] deficits in the caudate- putamen caused by AM404, as also did capsazepine. In a second group of studies, we wanted to explore the potential antihyperkinetic effects of various compounds which, compared to AM404, exhibit more selectivity for either the endovanilloid or the endocannabinoid systems. First, we tested VDM11 or AM374, two selective inhibitors or the endocannabinoid re-uptake or hydrolysis, respectively. Both compounds were mostly unable to reduce hyperkinesia in 3NP-lesioned rats, although VDM11 produced a certain motor depression, and AM374 exhibited a trend to stimulate ambulation, in control rats. We also tested the effects of selective direct agonists for VR1 (capsaicin) or CB1 (CP55,940) receptors. Capsaicin exhibited a strong antihyperkinetic activity and, moreover, was able to attenuate the reductions in dopamine and GABA transmission provoked by the 3NP lesion, whereas CP55,940 had also antihyperkinetic activity but was unable to cause recovery of either dopamine or GABA deficits in the basal ganglia. In summary, our data indicate a major role for VR1 receptors, as compared to CB1 receptors, in the antihyperkinetic effects and the recovery of neurochemical deficits caused in 3NP-lesioned rats by compounds that activate both CB1 and VR1 receptors, either directly or via manipulation of the levels of endogenous agonists.  相似文献   

13.
Endocannabinoids as cardiovascular modulators   总被引:8,自引:0,他引:8  
Cannabinoids, the bioactive constituents of the marijuana plant and their synthetic and endogenous analogs cause not only neurobehavioral, but also cardiovascular effects. The most important component of these effects is a profound decrease in blood pressure and heart rate. Although multiple lines of evidence indicate that the hypotensive and bradycardic effects of anandamide and other cannabinoids are mediated by peripherally located CB1 cannabinoid receptors, anandamide can also elicit vasodilation in certain vascular beds, which is independent of CB1 or CB2 receptors. Possible cellular mechanisms underlying these effects and the cellular sources of vasoactive anandamide are discussed.  相似文献   

14.
The endogenous cannabinoid anandamide causes hypotension and mesenteric arteriolar dilation. A detailed analysis of its effects on systemic and portal venous hemodynamics had not yet been performed. We assessed the effects of anandamide (0.4-10 mg/kg) on systemic and portal hemodynamics with and without prior treatment with various antagonists. The specific antagonists used included SR-141716A, N(omega)-nitro-L-arginine methyl ester, indomethacin, and nordihydroguaiaretic acid. Anandamide produced a dose-dependent decrease in mean arterial pressure due to a drop in systemic vascular resistance (SVR) that was accompanied by a compensatory rise in cardiac output. Anandamide also elicited an increase in both portal venous flow and pressure, along with a decline in mesenteric vascular resistance (MVR). Pretreatment with 3 mg/kg SR-141716A, a CB(1) antagonist, prevented the decline of SVR and MVR from the lower dose of anandamide. Antagonism of nitric oxide synthetase, cyclooxygenase, or 5-lipoxygenase did not prevent the systemic nor the portal hemodynamic effects of anandamide. Furthermore, the use of R-methanandamide, a stable analog of anandamide, produced similar hemodynamic effects on the mesenteric vasculature, thereby implying that the effects of anandamide are not related to its breakdown products. Anandamide produced profound, dose-dependent alterations in both the systemic and portal circulations that could be at least partially blocked by pretreatment with SR-141716A.  相似文献   

15.
It has been shown that the main psychoactive component of marihuana, delta9-tetrahydrocannabinol (THC) has mainly inhibitory effects on the regulation of reproduction. Recently, the purification and availability of the endogenous ligand of the cannabinoid receptor, arachidonyl ethanolamide, anandamide, (ANA) and its specific long lasting antagonist, the SR 141716 (SR) provided us the opportunity to compare the effects of THC and ANA on the neuroendocrine regulation of reproduction. ANA decreases serum luteinizing hormone (LH) and prolactin (PRL) levels in rats of both sexes. It has no action on serum follicle stimulating hormone (FSH) level. When ANA was administered to pregnant rats it resulted in an increase of the duration of pregnancy and in the frequency of stillbirths. The postnatal development of hypothalamo-pituitary axis in offspring was temporarily inhibited. In conclusion, we found that exogenous and endogenous cannabinoids have only slightly different effects on the reproductive parameters. These effects may occur via the central cannabinoid receptor. It is possible that the sites of action are at both hypothalamic and pituitary levels. The results further support the view that ANA may be a central neurotransmitter or neuromodulator.  相似文献   

16.
Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity.  相似文献   

17.
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.  相似文献   

18.
Lam FF  Luk PW  Ng ES 《Life sciences》2007,80(16):1495-1502
This study investigates the actions of N-(2-hydroxyethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (anandamide) on blood flow of the rat knee joint. Topical bolus administration of anandamide (10-1000 nmol) onto the exposed knee joint capsules produced dose-dependent increases in the knee joint blood flow. Various antagonists were tested on the vasodilator response to 100 nmol anandamide. Capsazepine (N-[2-(4-chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-benzazepine-2-carbothioamide), an antagonist of the transient receptor potential vanilloid type 1 (TRPV1) receptor, given at 10 and 100 nmol, suppressed the response by a maximum of 71%. A cannabinoid CB(1) receptor antagonist AM281 (10 nmol) and a CB(2) receptor antagonist AM630 (10 nmol) shortened its duration from 15 min to 5 min. O-1918 (1 nmol), an antagonist of the putative endothelial anandamide/abnormal-cannabidiol receptor, on its own or combined with capsazepine and the two cannabinoid receptor antagonists produced 38% and 24% inhibition on the peak vasodilator response to anandamide, respectively. URB597 (1 nmol), an inhibitor of fatty acid amide hydrolase (FAAH) suppressed the response by 40%, and an anandamide transporter inhibitor [N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide] (AM404; 1 nmol) or a cyclo-oxygenase (COX) inhibitor flurbiprofen (20 nmol) abolished the response. These findings suggest the vasodilator action of anandamide in the rat knee joint involved hydrolysis of the compound by FAAH, production of COX-derived eicosanoid(s), activation of TRPV1 receptors, and a small component involved activation of endothelial anandamide/abnormal-cannabidiol receptors; a minor delayed dilator response was mediated by activation of conventional cannabinoid receptors.  相似文献   

19.
Anandamide (N-arachidonoylethanolamine) has been identified as an endogenous ligand of the G-protein coupled cannabinoid CB(1) receptor. Recent studies have postulated the existence of carrier-mediated anandamide transport which is involved in the termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellulary, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-arachidonoylglycerol (2-AG). Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors, the anandamide transporter and FAAH are currently emerging in the literature. This review considers the divergences between these SARs and focuses upon the conformational implications for endocannabinoid recognition at each of these biological targets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号