首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyruvate kinase activity in Trypanosoma brucei brucei is stimulated in the presence of L-carnitine and is inhibited by acetyl CoA, ATP or the ATP-Mg2+ complex. Increased pyruvate kinase activity is associated with stimulation of ATP synthesis in the presence of L-carnitine. There is evidence that carnitine stimulates pyruvate kinase activity indirectly by removing the inhibitory modulator acetyl CoA as a result of the carnitine acetyl transferase (CAT) also present in the trypanosomes.  相似文献   

2.
The induction of ischemia in the open chest dog, or anoxia in the perfused rat heart, causes dramatic changes in the tissue levels of free acyl carnitine and related metabolites. During the early phase of ischemia or anoxia the tissue levels of free carnitine decline, while acetyl carnitine rapidly increases. These changes are accompanied by elevation in long-chain acyl carnitine, long-chain acyl CoA, and lactate and by decreases in acetyl CoA, CoA, ATP, and creatine phosphate. As the degree of ischemia becomes more severe, carnitine appears to be lost from the myocardium. A scheme is presented which relates carnitine-linked mitochondrial metabolism to the activity of carnitine acyl transferase, ANT, carnitine/acyl carnitine translocase, creatine phosphokinase, and pyruvate dehydrogenase. It is suggested that the conversion of carnitine to acyl carnitine during the onset of ischemia may play an important role, by virtue of its effect on these enzymes, in the regulation of metabolism during the early or reversible phase of ischemia.  相似文献   

3.
The supply of acetyl units from the mitochondrion to the cytosol of Candida albicans appears to be dependent only upon the activity of carnitine acetyltransferase (CAT). The enzyme ATP:citrate lyase (ACL), the major source of acetyl units in oleaginous yeasts, is absent from C. albicans in both the mycelial and yeast forms. There appears to be no other active translocation of acetate or acetyl groups except via the action of carnitine acetyltransferase.  相似文献   

4.
In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid beta-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransferase (Cat) activities. Here we show that the human fungal pathogen Candida albicans lacks peroxisomal Cit, relying exclusively on Cat activity for transport of acetyl units. Deletion of the CAT2 gene encoding the major Cat enzyme in C. albicans resulted in a strain that had lost both peroxisomal and mitochondrion-associated Cat activities, could not grow on fatty acids or C(2) carbon sources (acetate or ethanol), accumulated intracellular acetyl-CoA, and showed greatly reduced fatty acid beta-oxidation activity. The cat2 null mutant was, however, not attenuated in virulence in a mouse model of systemic candidiasis. These observations support our previous results showing that peroxisomal fatty acid beta-oxidation activity is not essential for C. albicans virulence. Biofilm formation by the cat2 mutant on glucose was slightly reduced compared to that by the wild type, although both strains grew at the same rate on this carbon source. Our data show that C. albicans has diverged considerably from S. cerevisiae with respect to the mechanism of intracellular acetyl-CoA transport and imply that carnitine dependence may be an important trait of this human fungal pathogen.  相似文献   

5.
Exposure of rat liver mitochondrial membranes to octyl glucoside, Triton X-100, or Tween 20 solubilized an active and tetradecylglycidyl-CoA (TG-CoA)-insensitive carnitine palmitoyltransferase (presumed to be carnitine palmitoyltransferase II). The residual membranes after octyl glucoside or Triton X-100 treatment were devoid of all transferase activity. By contrast, Tween 20-extracted membranes were still rich in transferase; this was completely blocked by TG-CoA and thus was presumed to be carnitine palmitoyltransferase I. The residual carnitine palmitoyltransferase activity disappeared from the membranes upon subsequent addition of octyl glucoside or Triton X-100 and could not be recovered in the supernatant fraction. Antibody raised against purified rat liver transferase II (Mr 80,000) recognized only this protein in immunoblots from untreated liver mitochondrial membranes containing both transferases I and II. Tween 20-extracted membranes, which contained only transferase I, did not react with the antibody. Purified transferase II from skeletal muscle (also of Mr 80,000) was readily recognized by the antiserum, suggesting antigenic similarity with the liver enzyme. These and other studies on the effects of detergents on the mitochondrial [3H]TG-CoA binding protein provide further support for the model of carnitine palmitoyltransferase proposed in the preceding paper. They suggest that: 1) carnitine palmitoyltransferases I and II in rat liver are immunologically distinct proteins; 2) transferase I is more firmly anchored into its membrane environment than transferase II; 3) association of carnitine palmitoyltransferase I with a membrane component(s) is necessary for catalytic activity. While carnitine palmitoyltransferase I is a different protein in liver and muscle, it seems likely that both tissues share the same transferase II.  相似文献   

6.
Magnaporthe grisea, the causal agent of rice blast disease, invades plant tissue due to the action of specialized infection structures called appressoria, which are used to breach the leaf cuticle and allow development of intracellular, infectious hyphae. In this report we demonstrate that peroxisomal carnitine acetyl transferase (CAT) activity is necessary for appressorium function, and in particular, for the elaboration of primary penetration hyphae. The major CAT activity in M. grisea is encoded by the PTH2 gene, which shows elevated expression in response to acetate and lipid, and is regulated by the cyclic AMP response pathway. Furthermore, a Pth2-GFP fusion protein colocalizes with a peroxisomal marker protein. Targeted deletion of PTH2, generated mutants that were completely non-pathogenic, lacked CAT activity and were unable to utilize a range of lipid substrates. The impairment of appressorium function in Deltapth2 was associated with a delay in lipid reserve mobilization from germ tubes into developing infection cells, and abnormal chitin distribution in infection structures. Addition of glucose to Deltapth2 mutants partially restored the ability to cause rice blast disease and lipid reserve mobilization. Taken together, our findings provide evidence that Pth2 plays a role in the generation of acetyl CoA pools necessary for appressorium function and rapid elaboration of penetration hyphae during host infection.  相似文献   

7.
Rat-liver mitochondria were incubated with [14C]palmitate in the presence of L-malate, fluorocitrate, and L-carnitine. The specific activities of acetyl groups incorporated into citrate, ketone bodies and acetyl-L-carnitine were measured. During state-4 oxidation of [1--14C]palmitate the specific activity of the acetyl-CoA pool was 1.3-times higher than that of the average acetyl group of palmitate, indicating an incomplete breakdown of the palmitate molecule. Accumulation of carnitine esters was observed in this condition. The acyl moieties of carnitine esters formed during the state-4 oxidation of [U-14C]palmitate or [16(-14)C]palmitate were analysed by radioactive gas-chromatography. Substantial amounts of beta-oxidation intermediates were found. The accumulation of carnitine esters of C6-C14 intermediates can quantitatively explain the high specific activity of the acetyl-CoA pool during the state-4 oxidation of [1(-14)C] palmitate. The localization and control of beta-oxidation are discussed.  相似文献   

8.
Mitochondrial beta-oxidation provides much of the fuel requirements of heart and skeletal muscle despite the malonyl-CoA concentration greatly exceeding the IC(50) of carnitine palmitoyl transferase for malonyl-CoA. To try to explore the relationship between inhibition of carnitine palmitoyl transferase I activity and beta-oxidation flux, we measured the flux control coefficient of carnitine palmitoyl transferase I over beta-oxidation carbon flux in suckling rat heart mitochondria. The flux control coefficient was found to be 0.08 +/- 0.05 and 50% of carnitine palmitoyl transferase I activity could be inhibited before beta-oxidation flux was affected. These observations may help to explain the presence of high rates of beta-oxidation despite the high concentration of malonyl-CoA in rat heart; we hypothesize that although not rate-limiting in vitro, carnitine palmitoyl transferase is rate-limiting in vivo because of the high malonyl-CoA concentration in heart and muscle.  相似文献   

9.
Caffeine, which stimulates the motility of freshly extruded bovine epididymal spermatozoa, caused a large but transient increase in the respiratory activity of these cells incubated in a modified Ringer buffer without exogenously added substrate. In spermatozoa that were incubated without added substrate for 2 h at 30 °C or for 15 min at 37 °C, caffeine addition failed to increase respiratory activity even transiently. However, subsequent addition of pyruvate to these aged and caffeine-treated cells resulted in a rapid increase in the respiratory rate, nearly equal to that observed after caffeine addition to fresh cells or to cells stored at 4 °C. These observations indicate that the loss in metabolic response to caffeine is a result of the active metabolism of the spermatozoa.In freshly prepared sperm that were incubated without added substrate, the acetyl carnitine content declined and the free carnitine content of the sperm increased in amounts sufficient to account for the entire respiratory increment produced by caffeine addition. Respiratory stimulation by caffeine was sustained in the presence of those exogenously added substrates that are capable of entering the acetyl carnitine pool, such as acetate, pyruvate, l(+)-lactate, glucose, fructose or β-hydroxybutyrate. Tricarboxylic acid cycle intermediates were not effective.These observations clarify the relationship between the stimulatory effects of caffeine and the metabolic state of the spermatozoan and suggest the importance of the acetyl carnitine pool to the activation of sperm motility and oxidative metabolism.  相似文献   

10.
Construction of a vector for cloning promoters in Bacillus subtilis   总被引:10,自引:0,他引:10  
L Band  D G Yansura  D J Henner 《Gene》1983,26(2-3):313-315
A versatile vector for cloning DNA fragments containing promoter activity in Bacillus subtilis was derived from plasmids pBR322, pUB110 and pC194. Selection is based on chloramphenicol resistance which is dependent upon the introduction of DNA fragments allowing expression of a chloramphenicol acetyl transferase gene. The plasmid contains a second selectable marker, neomycin resistance, and contains functional origins of replication for both B. subtilis and Escherichia coli.  相似文献   

11.
1. A continuously recording and sensitive fluorimetric assay is described for carnitine palmitoyltransferase. This assay has been applied to whole or disintegrated mitochondria and to soluble protein fractions. 2. When rat liver mitochondria had been disintegrated by ultrasound, the specific activity of carnitine palmitoyltransferase was 15-20m-units/mg of protein. Only one-fifth of this activity was assayable (with added substrates) before mitochondrial disintegration. 3. It is concluded that there are two carnitine palmitoyltransferase activities in rat liver mitochondria, of which one (type I) is relatively superficial in location and catalyses an acyl-group transfer between added CoA and carnitine, whereas the other (type II) is less superficial and catalyses an acyl-group transfer in unbroken mitochondria between added carnitine and intramitochondrial CoA. The existence of two distinct carnitine palmitoyltransferases was predicted by Fritz & Yue (1963). 4. In unbroken mitochondria, type I transferase is accessible to the inhibitor 2-bromostearoyl-CoA whereas the type II transferase is inaccessible. 5. A major part of the total carnitine palmitoyltransferase activity of rat liver mitochondria is membrane-bound and of type II. 6. These observations, when considered in conjunction with the penetration of mitochondria by CoASH or carnitine, indicate that the type II transferase is attached to the inner mitochondrial membrane.  相似文献   

12.
The activities of ATP-citrate lyase in frog, guinea pig, mouse, rat, and human brain vary from 18 to 30 μmol/h/g of tissue, being several times higher than choline acetyltransferase activity. Activities of pyruvate dehydrogenase and acetyl coenzyme A synthetase in rat brain are 206 and 18.4 μmol/h/g of tissue, respectively. Over 70% of the activities of both choline acetyltransferase and ATP-citrate lyase in secondary fractions are found in synaptosomes. Their preferential localization in synaptosomes and synaptoplasm is supported by RSA values above 2. Acetyl CoA synthetase activity is located mainly in whole brain mitochondria (RSA, 2.33) and its activity in synaptoplasm is low (RSA, 0.25). The activities of pyruvate dehydrogenase, citrate synthase, and carnitine acetyltransferase are present mainly in fractions C and Bp. No pyruvate dehydrogenase activity is found in synaptoplasm. Striatum, cerebral cortex, and cerebellum contain similar activities of pyruvate dehydrogenase, citrate synthase, carnitine acetyltransferase, fatty acid synthetase, and acetyl-CoA hydrolase. Activities of acetyl CoA synthetase, choline acetyltransferase and ATP-citrate lyase in cerebellum are about 10 and 4 times lower, respectively, than in other parts of the brain. These data indicate preferential localization of ATP-citrate lyase in cholinergic nerve endings, and indicate that this enzyme is not a rate limiting step in the synthesis of the acetyl moiety of ACh in brain.  相似文献   

13.
Carnitine acyltransferase activities for acetyl- and octanoyl-CoA (coenzyme A) occur in isolated peroxisomal, mitochondrial, and microsomal fractions from rat and pig liver. Solubility studies indicated that both peroxisomal carnitine acyltransferases were in the soluble matrix. In contrast, the microsomal carnitine acyltransferases were tightly associated with their membrane. The microsomal short-chain transferase, carnitine acetyltransferase, was solubilized and stabilized by extensive treatment of the membrane with 0.4 m KCl or 0.3 m sucrose in 0.1 m pyrophosphate at pH 7.5. The same treatment only partially solubilized the microsomal medium-chain transferase, carnitine octanoyltransferase.Although half of the total carnitine acetyltransferase activity in rat liver resides in peroxisomes and microsomes, previous reports have only investigated the mitochondrial activity. Transferase activity for acetyl- and octanoyl-CoA were about equal in peroxisomal and in microsomal fractions. A 200-fold purification of peroxisomal and microsomal carnitine acetyltransferases was achieved using O-(diethylaminoethyl)-cellulose and cellulose phosphate chromatography. This short-chain transferase preparation contained less than 5% as much carnitine octanoyltransferase and acyl-CoA deacylase activities. This fact, plus differences in solubility and stability of the microsomal transferase system for acetyl- and octanoyl-CoA indicate the existence of two separate enzymes: a carnitine acetyltransferase and a carnitine octanoyltransferase in peroxisomes and in microsomes.Peroxisomal and microsomal carnitine acetyltransferases had similar properties and could be the same protein. They showed identical chromatographic behavior and had the same pH activity profiles and major isoelectric points. They also had the same apparent molecular weight by gel filtration (59,000) and the same relative velocities and Km values for several short-chain acyl-CoA substrates. Both were active with propionyl-, acetyl-, malonyl-, and acetyacetyl-CoA, but not with succinyl- and β-hydroxy-β-methylglutaryl-CoA as substrates.  相似文献   

14.
Incubation of carnitine acetyltransferase with low concentrations of bromoacetyl-l-carnitine causes a rapid and irreversible loss of enzyme activity; one mol of inhibitor can inactivate one mol of enzyme. Bromoacetyl-d-carnitine, iodoacetate or iodoacetamide are ineffective. l-Carnitine protects the transferase from bromoacetyl-l-carnitine. Investigation shows that the enzyme first reversibly binds bromoacetyl-l-carnitine with an affinity similar to that shown for the normal substrate acetyl-l-carnitine; this binding is followed by an alkylation reaction, forming the carnitine ester of a monocarboxymethyl-protein, which is catalytically inactive. The carnitine is released at an appreciable rate by spontaneous hydrolysis, and the resulting carboxymethyl-enzyme is also inactive. Total acid hydrolysis of enzyme after treatment with 2-[(14)C]bromoacetyl-l-carnitine yields N-3-carboxy[(14)C]methylhistidine as the only labelled amino acid. These findings, taken in conjunction with previous work, suggest that the single active centre of carnitine acetyltransferase contains a histidine residue.  相似文献   

15.
Surgical decentralization of the superior cervical ganglion (SCG) in rats and mice led to a fall in ganglionic tyrosine hydroxylase (T-OH) activity, and a loss of more than 90 per cent of the preganglionic neurone marker, choline acetyl transferase. T-OH activity was reduced by more than 50 per cent in mice SCG ten days after surgery, but fell by only 25 per cent in rat SCG after 21 days. The surgical procedure did not cause obvious histo-logical damage or loss of SCG cells in either species. Both T-OH and choline acetyl transferase activities in rat and mouse SCG recovered to normal three months after surgery. Reserpine treatment was more effective in rats in causing increased ganglionic T-OH activity than in mice. Neither decentralization nor reserpine treatment caused any changes in DOPA-decarboxylase or monoamine oxidase activities in rat SCG. These results demonstrate that T-OH activity in SCG is subject to trans-synaptic regulation in both rats and mice; this regulation does not apply to DOPA-decarboxylase or monoamine oxidase. Differences in basal sympathetic tone may explain the different results obtained in mice and rats.  相似文献   

16.
Transport of acetyl-CoA between intracellular compartments is mediated by carnitine acetyltransferases (Cats) that reversibly link acetyl units to the carrier molecule carnitine. The genome of the opportunistic pathogenic yeast Candida albicans encodes several (putative) Cats: the peroxisomal and mitochondrial Cat2 isoenzymes encoded by a single gene and the carnitine acetyltransferase homologs Yat1 and Yat2. To determine the contributions of the individual Cats, various carnitine acetyltransferase mutant strains were constructed and subjected to phenotypic and biochemical analyses on different carbon sources. We show that mitochondrial Cat2 is required for the intramitochondrial conversion of acetylcarnitine to acetyl-CoA, which is essential for a functional tricarboxylic acid cycle during growth on oleate, acetate, ethanol, and citrate. Yat1 is cytosolic and contributes to acetyl-CoA transport from the cytosol during growth on ethanol or acetate, but its activity is not required for growth on oleate. Yat2 is also cytosolic, but we were unable to attribute any function to this enzyme. Surprisingly, peroxisomal Cat2 is essential neither for export of acetyl units during growth on oleate nor for the import of acetyl units during growth on acetate or ethanol. Oxidation of fatty acids still takes place in the absence of peroxisomal Cat2, but biomass formation is absent, and the strain displays a growth delay on acetate and ethanol that can be partially rescued by the addition of carnitine. Based on our results, we present a model for the intracellular flow of acetyl units under various growth conditions and the roles of each of the Cats in this process.  相似文献   

17.
In double-blind cross-over experiments, ten moderately trained male subjects were submitted to two bouts of maximal cycle ergometer exercise separated by a 3 day interval. Each subject was randomly given either L-carnitine (2 g) or placebo orally 1 h before the beginning of each exercise session. At rest L-carnitine supplementation resulted in an increase of plasma-free carnitine without a change in acid-soluble carnitine esters. Treatment with L-carnitine induced a significant post-exercise decrease of plasma lactate and pyruvate and a concurrent increase of acetylcarnitine. The determination of the individual carnitine esters in urine collected for 24 h after the placebo exercise trial revealed a decrease of acetyl carnitine and a parallel increase of a C4 carnitine ester, probably isobutyrylcarnitine. Conversely, acetylcarnitine was strongly increased and C4 compounds were almost suppressed in the L-carnitine loading trial. These results suggest that L-carnitine administration prior to high-intensity exercise stimulates pyruvate dehydrogenase activity, thus diverting pyruvate from lactate to acetylcarnitine formation.  相似文献   

18.
Carnitine acetyltransferase was isolated from yeast Saccharomyces cerevisiae with an apparent molecular weight of 400,000. The enzyme contains identical subunits of 65,000 Da. The Km values of the isolated enzyme for acetyl-CoA and for carnitine were 17.7 microM and 180 microM, respectively. Carnitine acetyltransferase is an inducible enzyme, a 15-fold increase in the enzyme activity was found when the cells were grown on glycerol instead of glucose. Carnitine acetyltransferase, similarly to citrate synthase, has a double localization (approx. 80% of the enzyme is mitochondrial), while acetyl-CoA synthetase was found only in the cytosol. In the mitochondria carnitine acetyltransferase is located in the matrix space. The incorporation of 14C into CO2 and in lipids showed a similar ratio, 2.9 and 2.6, when the substrate was [1-14C]acetate and [1-14C]acetylcarnitine, respectively. Based on these results carnitine acetyltransferase can be considered as an enzyme necessary for acetate metabolism by transporting the activated acetyl group from the cytosol into the mitochondrial matrix.  相似文献   

19.
Histone acetyl transferases are important regulators of cellular homeostasis. This study describes a sensitive acetyl transferase electrophoretic mobility shift assay applicable both for kinetic analysis of acetyl transferase inhibitors and for high-throughput testing. Application of the assay for human GCN5L2 enabled dissection of inhibitor competition with respect to acetyl coenzyme A. Furthermore, we demonstrated that the assay can detect time-dependent inhibition of human GCN5L2 by reactive inhibitors.  相似文献   

20.
Summary The purpose of the present study was to investigate the relationship between plasma carnitine concentration and body composition variation in relation to muscular and fat masses since there is no experimentally proved correlation between plasma carnitine and body masses. We used bioelectric impedance analysis (BIA), to determine body composition and to have a complete physical fitness evaluation. The post-absorptive plasma free carnitine and acetyl carnitine plasma levels, body composition as Fat-Free Mass (FFM) and Fat Mass (FM) in kg, as well as in percent of body mass, were analysed in 33 healthy subjects. A significant negative correlation was found between plasma acetyl carnitine and FFM in weight (kg) as well as in percent of body mass (respectively p < 0.0001; p < 0.01); a significant positive correlation was found only between FM in percent and plasma acetyl carnitine (p < 0.01). The observed negative correlation between plasma acetyl carnitine and muscular mass variation might reflect an oxidative metabolic muscle improvement in relation to muscular fat free mass increment and might be evidence that muscle metabolism change is in relation to plasma acetyl carnitine concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号