首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypotheses that larval fish density may potentially affect phytoplankton abundance through regulating zooplankton community structure, and that fish effect may also depend on nutrient levels were tested experimentally in ponds with three densities of larval walleye, Stizostedion vitreum (0, 25, and 50 fish m–3), and two fertilizer types (inorganic vs organic fertilizer). A significant negative relationship between larval fish density and large zooplankton abundance was observed despite fertilizer types. Larval walleye significantly reduced the abundances of Daphnia, Bosmina, and Diaptomus but enhanced the abundance of various rotifer species (Brachionus, Polyarthra, and Keratella). When fish predation was excluded, Daphnia became dominant, but Daphnia grazing did not significantly suppress blue-green algae. Clearly, larval fish can be an important regulator for zooplankton community. Algal composition and abundance were affected more by fertilizer type than by fish density. Inorganic fertilizer with a high N:P ratio (20:1) enhanced blue-green algal blooms, while organic fertilizer with a lower N:P ratio (10:1) suppressed the abundance of blue-green algae. This result may be attributed to the high density of blue-green algae at the beginning of the experiment and the fertilizer type. Our data suggest that continuous release of nutrients from suspended organic fertilizer at a low rate may discourage the development of blue-green algae. Nutrient inputs at a low N:P ratio do not necessarily result in the dominance of blue-green algae.  相似文献   

2.
The role of highly unsaturated fatty acids in aquatic foodweb processes   总被引:9,自引:0,他引:9  
1. Polyunsaturated fatty acids (PUFA) are almost exclusively synthesized by plants. Animals can convert from one form of PUFA to another through elongation and desaturation, but very few can synthesize PUFA de novo. PUFA play an important role in regulating cell membrane properties, serve as precursors for important animal hormones and are essential for animals. 2. In aquaculture studies, highly unsaturated fatty acids (HUFA), a subset of PUFA, have been found to be critical for maintaining high growth, survival and reproductive rates and high food conversion efficiencies for a wide variety of marine and freshwater organisms. 3. The plankton literature suggests high food-quality algae species are rich in HUFA and low food-quality algae are poor in HUFA. Adding semi-pure emulsions of HUFA to algae monocultures can markedly increase the growth rates of zooplankton feeding on these mixtures. 4. A study measuring zooplankton biomass accrual when feeding on natural phytoplankton found a strong correlation between phytoplankton HUFA (specifically eicosapentaenoic acid) content and herbivorous zooplankton production. 5. The aquatic ecology literature suggests that planktonic foodwebs with high HUFA content phytoplankton have high zooplankton to phytoplankton biomass ratios, while systems with low HUFA phytoplankton have low zooplankton biomass. Also, the seasonal succession of plankton in many temperate lakes follows patterns tied to phytoplankton HUFA content, with intense zooplankton grazing and ‘clear-water-phases’ characteristic of periods when the phytoplankton is dominated by HUFA-rich species. 6. Herbivorous zooplankton production is constrained by the zooplankton’s ability to ingest and digest phytoplankton. It is becoming increasingly clear, however, that much of the phytoplankton which is assimilated may be nutritionally inadequate. HUFA may be key nutritional constituents of zooplankton diets, and may determine energetic efficiency across the plant–animal interface, secondary production and the strength of trophic coupling in aquatic pelagic foodwebs.  相似文献   

3.
Ejsmont-Karabin  J.  Gulati  R. D.  Rooth  J. 《Hydrobiologia》1989,(1):29-34
Visual observations and experiments on food preference of Euchlanis dilatata lucksiana show that this euchlanid can feed on blue-green algae not consumed by the most planktonic animals. Nevertheless, even in lakes with blooms of blue-green algae, E. d. lucksiana occur infrequently and generally in low numbers. The paper is an attempt to explore into the causes for the rare occurrence of Euchlanis in the pelagial. A comparison of threshold food concentrations calculated from N and P excretion rates (Gulati et al., this volume) with the concentrations of seston in the Lake Loosdrecht shows that the latter were several times higher during study period in 1984. This implies that the food requirements of Euchlanis were always satisfied in this lake. The time needed for the consumption of the total food fraction in a liter of lake water by a concentration of 50 Euchlanis l–1 was also calculated. This time varied from 70 to 200 days, so a Euchlanis population even at its maximum density will not cause major changes in blue-green algae biomass by grazing. Thus, food limitation cannot be viewed as a factor controlling the Euchlanis densities in Loosdrecht Lakes. There is some evidence that Euchlanis is heavily predated in Loosdrecht Lakes, losses in its biomass accounting for 126% of the production. Adaptation of this species to the littoral zone, as expressed by the deposition of eggs on plants, can also limit the occurrence of the lucksiana form to water bodies with blooms of blue-green algae.  相似文献   

4.
Rates of loss sustained by selected populations of natural phytoplanktonhusbanded in large limnetic enclosures ("Lund Tubes") are derived,in terms of specific biomass units (cells or colonies), fromdirect measurements of the rates of net increase, of sedimentationand zooplankton filtration, corrected for selectivity ("grazing").Partitioning between the losses was found to vary interspecificallybetween almost complete removal by grazers (in the case of nanoplankton)and almost complete elimination by sinking (in the case of somediatom populations). These differences are argued to be criticalin influencing the specific composition of the phytoplanktonand its seasonal dominance. A model simulating the dynamicsof three species experiencing differential loss rates is employedto demonstrate the outcome of interspecific competition. Evidencecontrary to the widely-held contentions that zooplankton controlsphytoplankton biomass and that blue-green algae (cyano-bacteria)dominate by virtue of being "ungrazed" is discussed. 1Present address: Anglian Water Authority, Oundle, Peterborough,PE8 4AS, UK  相似文献   

5.
浮游动物诱发藻类群体的形成   总被引:8,自引:3,他引:5  
杨州  孔繁翔 《生态学报》2005,25(8):2083-2089
从研究蓝藻水华形成机理的需要出发,综述了浮游动物的牧食压力对藻类群体形成的诱发作用。指出诱发藻类群体形成的化合物来自牧食性浮游动物对藻类的有效牧食,是藻类群体形成的重要原因之一,而这些诱发性的化合物并不是有关生物体的组成成分,是种间相互作用的结果。藻类群体的形成方式有源于一个母细胞的分裂和业已存在的单细胞的聚合两种方式,栅藻的诱发性群体可能是来自一个母细胞的分裂,而在其它藻类的诱发性群体形成如铜绿微囊藻则可能是业已存在的单细胞的聚合。由于藻类形成群体后能显著降低浮游动物对其牧食速率,因此,这种诱发性群体形成的现象,可以解释为藻类对变化的牧食压力的一种有效的反牧食防御策略,也是两者协同进化的结果。浮游动物对藻类群体形成的重要作用,在研究模拟蓝藻群体及水华形成值得借鉴应用。作者还提出推测,水华蓝藻的群体形成,可能就是在富营养化条件下藻类快速生长,加上浮游动物的牧食压力共同作用下联合驱动的结果,而这种群体形成很可能在积累到一定程度后,结合特定的气象水文等理化因子,就会聚集于水表“爆发”出肉眼可见的水华。因此,开展浮游动物牧食作用对水华蓝藻早期群体形成诱发效应的研究不仅能加深对水华形成的全面认识,而且对于进一步认识藻类的诱发性反牧食防御适应机制、揭示生态系统中生物之间的复杂关系也具有重要的理论意义。  相似文献   

6.
Harmful algal blooms that disrupt and degrade ecosystems (ecosystem disruptive algal blooms, EDABs) are occurring with greater frequency and severity with eutrophication and other adverse anthropogenic alterations of coastal systems. EDAB events have been hypothesized to be caused by positive feedback interactions involving differential growth of competing algal species, low grazing mortality rates on EDAB species, and resulting decreases in nutrient inputs from grazer-mediated nutrient cycling as the EDAB event progresses. Here we develop a stoichiometric nutrient–phytoplankton–zooplankton (NPZ) model to test a conceptual positive feedback mechanism linked to increased cell toxicity and resultant decreases in grazing mortality rates in EDAB species under nutrient limitation of growth rate. As our model EDAB alga, we chose the slow-growing, toxic dinoflagellate Karenia brevis, whose toxin levels have been shown to increase with nutrient (nitrogen) limitation of specific growth rate. This species was competed with two high-nutrient adapted, faster-growing diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii) using recently published data for relationships among nutrient (ammonium) concentration, carbon normalized ammonium uptake rates, cellular nitrogen:carbon (N:C) ratios, and specific growth rate. The model results support the proposed positive feedback mechanism for EDAB formation and toxicity. In all cases the toxic bloom was preceded by one or more pre-blooms of fast-growing diatoms, which drew dissolved nutrients to low growth rate-limiting levels, and stimulated the population growth of zooplankton grazers. Low specific grazing rates on the toxic, nutrient-limited EDAB species then promoted the population growth of this species, which further decreased grazing rates, grazing-linked nutrient recycling, nutrient concentrations, and algal specific growth rates. The nutrient limitation of growth rate further increased toxin concentrations in the EDAB algae, which further decreased grazing-linked nutrient recycling rates and nutrient concentrations, and caused an even greater nutrient limitation of growth rate and even higher toxin levels in the EDAB algae. This chain of interactions represented a positive feedback that resulted in the formation of a high-biomass toxic bloom, with low, nutrient-limited specific growth rates and associated high cellular C:N and toxin:C ratios. Together the elevated C:N and toxin:C ratios in the EDAB algae resulted in very high bloom toxicity. The positive feedbacks and resulting bloom formation and toxicity were increased by long water residence times, which increased the relative importance of grazing-linked nutrient recycling to the overall supply of limiting nutrient (N).  相似文献   

7.
1. High biomass of macrophytes is considered important in the maintenance of a clear‐water state in shallow eutrophic lakes. Therefore, rehabilitation and protection of aquatic vegetation is crucial to the management of shallow lakes. 2. We conducted field mesocosm experiments in 1998 and 1999 to study community responses in the plant‐dominated littoral zone of a lake to nutrient enrichment at different fish densities. We aimed to find the threshold fish biomass for the different nutrient enrichment levels below which large herbivorous zooplankton escapes control by fish. The experiments took place in the littoral of Lake Vesijärvi in southern Finland and were part of a series of parallel studies carried out jointly at six sites across Europe. 3. In 1998, when macrophyte growth was poor, a clear‐water state with low phytoplankton biomass occurred only in unenriched mesocosms without fish or with low fish biomass (4 g fresh mass m?2). Both nutrient enrichment and high fish biomass (20 g fresh mass m?2) provoked a turbid water state with high planktonic and periphytic algal biomass. The zooplankton community was dominated by rotifers and failed to control the biomass of algae in nutrient enriched mesocosms. The littoral community thus had low buffer capacity against nutrient enrichment. 4. In 1999, macrophytes, especially free‐floating Lemna trisulca L., grew well and the zooplankton community was dominated by filter‐feeding cladocerans. The buffer capacity of the littoral community against nutrient enrichment was high; a clear‐water state with low phytoplankton biomass prevailed even under the highest nutrient enrichment. High grazing rates by cladocerans, together with reduced light penetration into the water caused by L. trisulca, were apparently the main mechanisms behind the low algal biomass. 5. Effects of fish manipulations were less pronounced than effects of nutrient enrichment. In 1999, clearance rates of cladocerans were similar in fish‐free and low‐fish treatments but decreased in the high‐fish treatment. This suggests that the threshold fish biomass was between the low‐ and high‐fish treatments. In 1998, such a threshold was found only between fish‐free and low‐fish treatments. 6. The pronounced difference in the observed responses to nutrient enrichment and fish additions in two successive years suggests that under similar nutrient conditions and fish feeding pressure either clear or turbid water may result depending on the initial community structure and on weather.  相似文献   

8.
1. To improve mechanistic understanding of plankton responses to eutrophication, a mesocosm experiment was performed in the shallow littoral zone of a south Swedish lake, in which nutrient and fish gradients were crossed in a fully factorial design. 2. Food chain theory accurately predicted total biomass development of both phyto‐ and zooplankton. However, separating zooplankton and algae into finer taxonomic groups revealed a variety of responses to both nutrient and fish gradients. 3. That both nutrients and fish are important for phytoplankton dynamics was seen more clearly when viewing each algal group separately, than drawing conclusions only from broad system variables such as chlorophyll a concentration or total phytoplankton biovolume. 4. In some taxa, physiological constraints (e.g. sensitivity to high pH and low concentrations of free CO2) and differences in competitive ability may be more important for the biomass development than fish predation, grazing by herbivorous zooplankton, and nutrient availability. 5. We conclude that food chain theory accurately predicted responses in system variables, such as total zooplankton or algal biomass, which are shaped by the dynamics of certain strong interactors (‘keystone species’), such as large cladocerans, cyanobacteria and edible algae (<50 μm), whereas responses at finer taxonomic levels cannot be predicted from current theory.  相似文献   

9.
Grazing on filamentous algae by herbivorous zooplankton   总被引:8,自引:0,他引:8  
SUMMARY. 1. Feeding experiments were conducted to examine filtering rates and selectivity of a variety of zooplankton taxa (including cladocerans, copepods and a rotifer) for filamentous diatoms, green and blue-green algae.
2. Most herbivores were capable of consuming some filamentous algae at rates similar to or higher than those on unicellular algae. Only feeding of Diaphanosoma brachyurum Liéven and Moina micrura Kurz seemed to be primarily limited by the filamentous morphology.
3. Filtering rates and selectivities of most herbivores were much higher for the diatom Melosira granulata angustissima Müller than for similarly sized blue-green algal filaments, indicating that chemical factors strongly influence consumption of filamentous algae.
4. The toxic blue-green algal filament Anabaena flos-aquae De Brébisson NRC 44–1 had a much strong inhibitory effect on zooplankton feeding than other filaments. The only herbivores that were not inhibited by this strain have been shown to be resistant to blue-green algal toxins, or strongly avoided consuming the blue-green alga. These results indicate that the inhibitory effect of filamentous algae is due more to toxic or noxious chemicals than to the filamentous morphology.
5. Selectivities of zooplankton for filamentous algae were largely independent of herbivore body size. The small-bodied cladoceran Bosmina longirostris Müller had the highest selectivities for filamentous algae.  相似文献   

10.
In 49 unpolluted lakes of north-eastern Poland the biomass of algae in summer is significantly related to the concentration of total phosphorus and to the rate of phosphorus regeneration by zooplankton. Using a model with equations describing these relationships, the biomass of blue-green algae and other phytoplankton groups was predicted for 14 polluted lakes. A good approximation of actual values was obtained only for the biomass of blue-green algae calculated from the estimated rate of P regeneration by zooplankton in these lakes. It is hypothesized that more-or-less edible algae of other classes did not show dependence on the rate of input of regenerated P because their biomass was heavily reduced by grazing of zooplankton.  相似文献   

11.
Christopher F. Steiner 《Oikos》2003,101(3):569-577
If prey species exhibit trade-offs in their ability to utilize resources versus their ability to avoid predation, predators can facilitate prey turnover along gradients of productivity, shifting dominance from edible to inedible prey (the keystone predator effect). I tested this model under controlled, laboratory conditions, using a model aquatic system composed of zooplankton as the top consumer, a diverse community of algae as prey, and nutrients as basal resources. Nutrient manipulations (low and high) were crossed with presence–absence of zooplankton. Results supported theoretical predictions. Algal biomass increased in response to enrichment regardless of predator presence/absence. However, predators and nutrients had an interactive effect on algal biomass and size structure. At the low nutrient level, algal-prey were dominated by edible forms and attained similar biomass regardless of zooplankton presence/absence. At the high level of enrichment, presence of zooplankton favored higher levels of algal biomass and shifted dominance to large, inedible taxa. At the termination of the experiment, I performed a series of lab-based assays on the resultant algal community in order to quantify trade-offs among algal size classes in maximal population growth rates (as a measure of competitive ability for nutrients) and susceptibility to zooplankton grazing. Assays provided support for a size-based keystone trade-off. Small size classes of algae displayed higher maximal growth rates but were more susceptible to grazing effects. Large size classes were protected from grazing but showed low rates of population growth in response to enrichment.  相似文献   

12.
Zooplankton,fish and fisheries in tropical freshwaters   总被引:9,自引:2,他引:7  
C. H. Fernando 《Hydrobiologia》1994,272(1-3):105-123
About 40% of all fish species occur in freshwater, although only 1% of the globe is occupied by freshwaters. The tropics harbour a high percentage of these fishes. Freshwater zooplankton on the other hand is far less diverse than its marine counterpart and the tropics do not harbour a markedly high percentage of freshwater species either. The antecedents of freshwater zooplankton appear to have come from riverine and terrestrial habitats via temporary habitats (ponds, floodplains). The present zooplankton composition has also been shaped by, among other factors, the highly efficient zooplanktivorous modern teleosts which have restricted the formerly widespread Branchiopoda mainly to fishless freshwaters. Those Branchiopoda frequently co-existing with fishes (Cladocera) have their size composition strongly influenced by fish predation. Circumstantial evidence indicates that pelagic zooplankton (Cladocera, Copepoda, Rotifera) appear to provide a relatively scarce food supply relative to the littoral region for the early stages of fishes. Also, unpredictability of zooplankton may be involved here. These factors have led to the loss of planktonic eggs and the siting of fish breeding in shallow littoral situations, where other animal foods besides zooplankton are also available, especially for later stages of juvenile fish. The Ostariophysi breed in the shallow expanses of flood waters while the Cichlidae, some of which breed like Ostariophysi, also breed in standing waters in the littoral of lakes or floodplains. In all these locations zooplankton and benthic organisms, especially insects, are available. The cichlids are, in addition, provided with parental care. Predation on young fishes is also reduced by these strategies. Young fishes may also be adapted to feed on patches of zooplankton and other food in their breeding grounds. Tropical pelagic clupeids and cyprinids may breed continuously. Some of these clupeids in rivers breed at low water.Zooplankton, supplemented by other animal food is more critical to achieving the potential fish yields in the tropics than in temperate freshwaters because fish yields in the tropics can be very high indeed. The high metabolic rate of young fishes in the tropics adds to the demand for food. Tropical freshwaters have a relatively high primary production but a low zooplankton/phytoplankton ratio. Zooplankton is kept small in size and biomass by continuous predation. Herbivorous fishes can sustain very high fish yields in the tropics but they must have a high fecundity and high survival of young produced seasonally, mainly in rivers or even continuously as in lakes and reservoirs to weather predation. Rich littoral zooplankton and benthos combined with omnivory and a higher efficiency in the use of the available animal food by newly hatched fishes may be critical factors linking fish yields to zooplankton in tropical freshwaters. The ability of herbivorous tilapias to give very high fish yields in shallow tropical lakes may also be due to their efficient use of animal food, algae and microphagy in young stages besides other favourable adaptations like opportunistic feeding on detrities and the ability to feed on and digest cyanobacteria, abundant in the tropics.  相似文献   

13.
Food of sterile triploid bighead carp, Hypophthalmichthys nobilis , was examined in ponds receiving water from a hypereutrophic take in Florida. No distinctive seasonal changes in food composition were found. The fish fed selectively on Botryococcus braunii Kuetzing, a large nuisance algal species, which constituted 61% of the volume and 50% of the dry weight of the food. Zooplankton was highly selected, but constituted only 3% of the food volume because of the low zooplankton density in the ponds. The remaining proportion of food consisted mainly of blue-green algae. Final fish biomass was low, ranging from 60 to 97 kg ha−1 in individual ponds. Low biomass was due to slow fish growth and high fish mortality. Despite low biomass, the fish lowered the ratio of blue-green/green algae in the ponds and tended to lower phyto- and zooplankton abundance.  相似文献   

14.
ANTARCTIC AQUATIC ECOSYSTEMS AS HABITATS FOR PHYTOPLANKTON   总被引:10,自引:0,他引:10  
1. The Southern Ocean is a large-scale, relatively homogeneous upwelling ecosystem whose phytoplankton apparently grows suboptimally over much of its area. By contrast there is a wide variety of freshwater habitats in the Antarctic and in some of these phytoplankton growth efficiency is very high. The two habitats share similar temperature and irradiance regimes, but differ markedly in availability of inorganic nutrients, in grazing pressure and in the time- and space-scales on which various physical processes act. 2. Concentrations of inorganic nutrients in the marine ecosystem have been represented as being in excess of phytoplankton requirements, but the ionic composition of some nutrient pools may not conform to phytoplankton preferences. 3. Nutrient-limitation determines phytoplankton production in Antarctic lakes and gives rise to gross differences between lakes. 4. Irradiance in the water column varies greatly over the year in both marine and freshwater ecosystems. Most algae are shade-adapted, with the ability to utilize low irradiance but with sub-optimal response to high irradiance. However, local phytoplankton maxima may attain very high carbon fixation and growth rates. 5. Consistently low temperatures characterize both systems. Their effects on photo-synthetic carbon uptake mirror shade-adaptation. Division rates of marine phytoplankton may however be very much higher than predicted for ambient temperatures. 6. Vertical mixing is important in both ecosystems and influences the environment experienced by phytoplankton cells. This appears to have little effect on the average performance of phytoplankton in the strongly mixed surface water column of the Southern Ocean, where the mixed depth may exceed 100 m. This can be related partly to the shade-adapted photosynthetic response. Euphotic depths range from 20 to 100 m. 7. Strong vertical mixing under ice-free conditions in lakes may maximize photosynthetic efficiency, whilst distinct vertical stratification in permanently ice-covered lakes gives rise to segregation of nutrient uptake and regeneration. 8. Physical removal of phytoplankton biomass by grazing is locally important in the Southern Ocean, in contrast to the estimated mean mesoscale impact of grazing. Vertical sedimentation losses appear important in the context of mixing depth and generation time, and may be modified by vertical circulation of water. 9. Loss of phytoplankton biomass from lakes during the ice-free period is dominated by physical removal via the lake outflow. Grazing is generally unimportant, except where larvae of otherwise nektobenthic zooplankton hatch in synchrony with a phytoplankton maximum. Sedimentation is important under ice-cover.  相似文献   

15.
It is becoming increasingly evident that the efficiency of zooplankton grazing on algae is not only a matter of quantity of the grazer relative to its food. Planktonic primary producers are not defenseless food-particles that are easily harvested by the consumers. Several algal species are able to adjust their phenotype (colony formation, spines, size) in such a way that it results in a reduced grazing pressure. It was recently demonstrated that morphological changes in the cell wall of green algae, induced by nutrient limitation and UV-B stress, may reduce their digestibility. A high fraction of induced cells pass intact and viable through the gut of the zooplankters, such that the grazing impact on the population is strongly reduced. It was also found that the presence of exudates (infochemicals) released by daphnids may change the morphology of algae. Unicellular green algae of the genus Scenedesmus were induced to form eight-cell coenobial types, heavily armed with spines, within three to five days after adding filtered water from an algal culture with Daphnia present. Both defence mechanisms may play an important role in zooplankton production and competition, and may serve as an example of highly efficient strategies to resist heavy grazing pressure.  相似文献   

16.
The Response of Experimental Rocky Shore Communities to Nutrient Additions   总被引:2,自引:0,他引:2  
The aim of this study was to determine whether the experimental nutrient enrichment of littoral rocky shore communities would be followed by a predicted accumulation of fast-growing opportunistic algae and a subsequent loss of perennial benthic vegetation. Inorganic nitrogen (N) and potassium (P) was added to eight concrete mesocosms inhabited by established littoral communities dominated by fucoids. The response to nutrient enrichment was followed for almost 2 1/2 years. Fast-growing opportunistic algae (periphyton and ephemeral green algae) grew significantly faster in response to nutrient enrichment, but the growth of red filamentous algae and large perennial brown algae was unaffected. However, these changes were not followed by comparable changes in the biomass and composition of the macroalgae. The biomass of opportunistic algae was stimulated only marginally by the nutrient enrichment, and perennial brown algae (fucoids) remained dominant in the mesocosm regardless of nutrient treatment level. Established rocky shore communities thus seem able to resist the effects of heavy nutrient loading. We found that the combined effects of the heavy competition for space and light imposed by canopy-forming algae, preferential grazing on opportunistic algae by herbivores, and physical disturbance, succeeded by a marked export of detached opportunistic algae, prevented the fast-growing algae from becoming dominant. However, recruitment studies showed that the opportunistic algae would become dominant when free space was available under conditions of high nutrient loading and low grazing pressure. These results show that established communities of perennial algae and associated fauna in rocky shore environments can prevent or delay the accumulation of bloom-forming opportunistic algae and that the replacement of long-lived macroalgae by opportunistic species at high nutrient loading may be a slow process. Nutrient enrichment may not, in itself, be enough to stimulate structural changes in rocky shore communities.  相似文献   

17.
Zooplankton grazing methods using radioactive tracers: Technical problems   总被引:3,自引:0,他引:3  
Some of the technical problems specific to the application of radiotracer techniques for measuring grazing of zooplankton are highlighted and, in some cases, the corrective measures suggested.The major drawbacks of measuring zooplankton grazing in the laboratory, for studying the role of zooplankton in nature, namely, changes in water temperature and light and heavy mortality of some cladocerans, are overcome by the use ofin situ grazing chambers. However, at present there are no suitable techniques available to measure short-term assimilation rates which usually suffer from the respiratory loss during the experiment of the assimilated radiotracer.In the ecosystem research in which zooplankton grazing is an integral part of the studies, the radiotracer food manufactured fromin situ lake seston is preferred to labelled monoculture of algae, bacteria or yeast. The specific activities of the different tracer components and size fractions of the seston comprising the tracer may considerably differ in short-term labelling. On the other hand, long labelling periods,i.e. exceeding a day for example, may lead to shifts in size spectra of and composition of the different phytoplankton species. Changes during the incubation in the size spectra of the tracerfood are probably of greater importance than those in species composition, especially because a size-selective feeding may often exist.Simultaneous use of different radiotracers for labelling phytoplankton and bacteria or for mixtures of algae that differ in sizes offers some promising applications. More work in this field is needed, particularly because of the overlapping energy spectra of the radiotracers, and differential loss rates of these tracers from the preserved animals before the radioactivity counting. Such losses of the tracer from the experimental animals may lead to significant errors, especially in the short-term grazing measurements. This problem can be, nevertheless, prevented to a large extent by a rapid freeze-drying of the animals immediately on concluding the experiment.Self absorption may be a problem in radioactivity counting, more so if the animals are large. Use of sample oxidizers offers a good solution if the tracer can be trapped in its oxidized, gaseous form (e.g. 14CO2) before further processing for counting. Modern solubilizing agents, like Soluene 350, with their relatively high water-holding capacity are quite effective in dissolving the different tissues, except the exoskeletal material.dedicated to Prof. H.F. Linskens, chairman of the Managing Committee of the Limnological Institute, in honour of his 65th birthday.  相似文献   

18.
Zooplankton may preferentially graze small, edible diatom species and therefore affect fossils relative to live assemblages by selective removal or increased sedimentation via egestion. Cladoceran zooplankton remains and diatom edibility were analyzed in sediment cores from Moon Lake and Coldwater Lake (North Dakota, USA) to assess changes in potential grazing pressure on algae and influence on diatom-inferred salinity (DIS) reconstructions. Sedimentary zooplankton in Moon Lake were dominated by littoral Cladocera, whereas Coldwater Lake assemblages were primarily small-bodied pelagic and littoral species. Relationships between cladocerans and environmental parameters over the past century varied by site and by species, with Chydorus brevilabris related most closely to drought at Moon and Bosmina sp. related to drought at Coldwater. A higher percentage of inedible diatoms occurred in the sediments of Moon Lake as compared to Coldwater Lake. DIS correlations with drought records improved in Moon Lake when only inedible diatom taxa were used to build a transfer function, but no improvement was seen for Coldwater Lake with this approach. These data suggest grazing pressure on diatoms differed between lakes and that zooplankton–phytoplankton interactions may affect the accuracy of drought reconstructions in the Great Plains.  相似文献   

19.
Reichwaldt ES  Wolf ID  Stibor H 《Oecologia》2004,141(3):411-419
Diel vertical migration (DVM) of herbivorous zooplankton is a widespread behavioural phenomenon in freshwater ecosystems. So far only little attention has been paid to the impact of DVM on the phytoplankton community in the epilimnion. Some theoretical models predict that algal population growth in the epilimnion should depend on the herbivores migration and grazing patterns: even if migrating zooplankton consume the same total amount of algae per day in the epilimnion as non-migrating zooplankton, nocturnal grazing should result in enhanced algal growth and favour algal species with high intrinsic growth rates over species with lower intrinsic growth rates. To test these hypotheses we performed experiments in which several algal species were confronted with different feeding regimes of Daphnia. In the experiments algal growth did not only depend on the absolute time of grazing but was comparatively higher when grazing took place only during the night, even when the grazing pressure was the same. Furthermore, algal species with higher intrinsic growth rates had higher advantages when being grazed upon only discontinuously during the night than algal species with a smaller intrinsic growth rate. The grazing pattern itself was an important factor for relative algal performance.  相似文献   

20.
Effects of UV-B irradiated algae on zooplankton grazing   总被引:2,自引:0,他引:2  
De Lange  Hendrika J.  L&#;rling  Miquel 《Hydrobiologia》2003,491(1-3):133-144
We tested the effects of UV-B stressed algae on grazing rates of zooplankton. Four algal species (Chlamydomonas reinhardtii, Cryptomonas sp., Scenedesmus obliquus and Microcystis aeruginosa) were used as food and fed to three zooplankton species (Daphnia galeata, Bosmina longirostris and Brachionus calyciflorus), representing different taxonomic groups. The phytoplankton species were cultured under PAR conditions, and under PAR supplemented with UV-B radiation at two intensities (0.3 W m–2 and 0.7 W m–2, 6 hours per day). Ingestion and incorporation experiments were performed at two food levels (0.1 and 1.0 mg C l–1) using radiotracer techniques. The effect of food concentration on ingestion and incorporation rate was significant for all three zooplankton species, but the effect of UV-B radiation was more complex. The reactions of the zooplankton species to UV-B stressed algae were different. UV-B stressed algae did not affect Daphnia grazing rates. For Bosmina the rates increased when feeding on UV-B stressed Microcystis and decreased when feeding on UV-B stressed Chlamydomonas, compared with non-stressed algae. Brachionus grazing rates were increased when feeding on UV-B stressed Cryptomonas and UV-B stressed Scenedesmus, and decreased when feeding on UV-B stressed Microcystis, compared with non-stressed algae. These results suggest that on a short time scale UV-B radiation may result in increased grazing rates of zooplankton, but also in decreased grazing rates. Long term effects of UV-B radiation on phytoplankton and zooplankton communities are therefore difficult to predict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号