首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structure of the large (50S) ribosomal subunit from Escherichia coli has been determined from electron micrographs of negatively stained specimens. A new method of three-dimensional reconstruction was used which combines many images of individual subunits recorded at a single high tilt angle. A prominent feature of the reconstruction is a large groove on the side of the subunit that interacts with the small ribosomal subunit. This feature is probably of functional significance as it includes the regions where the peptidyl transferase site and the binding locations of the elongation factors have been mapped previously by immunoelectron microscopy.  相似文献   

2.
Cover Picture     
Freeze‐etch images of ribosome‐translocon complex in chicken retinal pigment epithelial cells, where the ribosomal small subunit, large subunit, small translocon and large translocon are colored in yellow, blue, red and green respectively. The ribosomal small subunit is aligned over small translocon, and the ribosomal large subunit is over the large translocon as well. Reproduced from Miyaguchi and Reese (1996) with permission of Elsevier.  相似文献   

3.
Summary Multivariate statistical analysis and classification techniques are powerful tools in sorting noisy electron micrographs of single particles according to their principal features, enabling one to form average images with an enhanced signal-to-noise ratio and a better reproducible resolution. We apply this methodology here to determining the characteristic views of the large (50S) ribosomal subunits from the eubacteriumEscherichia coli and the archaebacteriaMethanococcus vannielii, Sulfolobus solfataricus, andHalobacterium marismortui. Average images were obtained of the subunit in the common crown and kidney projections, but views of the particle in orientations intermediate between these two extremes were also elucidated for all species. These averages show reproducible detail of up to 2.0 nm resolution, thus enabling the visualization and interspecies comparison of many structural features as a first step toward comparing the actual three-dimensional structures. Our results disprove evolutionary lineages recently postulated on the basis of electron microscopical images of ribosomal subunits.  相似文献   

4.
Summary Antisera prepared against purified Chlamydomonas reinhardi small chloroplast ribosomal subunit, judged homogenous by sucrose gradient velocity sedimentation and RNA gel electrophoresis was immunologically cross reactive with E. coli ribosomal proteins. The results of three different experimental approaches, namely Ouchterlony double diffusion, sucrose gradient velocity sedimentation and two dimensional crossed immunoelectrophoresis indicate that both E. coli ribosomal subunits and the chloroplast large ribosomal subunit contain proteins which show antigenic similarity to the chloroplast small ribosomal subunit proteins. However, cytoplasmic ribosomal subunits did not contain proteins which were cross reactive with immune antisera.  相似文献   

5.
1. Several nuclear mutants have been isolated which showed thermo- or cryo-sensitive growth on non-fermentable media. Although the original strain carried mitochondrial drug resistance mutations (CR, ER, OR and PR), the resistance to one or several drugs was suppressed in these mutants. Two of them showed a much reduced amount of the mitochondrial small ribosomal subunit (37S) and of the corresponding 16S ribosomal RNA. Two dimensional electrophoretic analysis did not reveal any change in the position of any of the mitochondrial ribosomal proteins. However one of the mitochondrial ribosomal proteins. However one of the mutants showed a striking decrease in the amounts of three ribosomal proteins S3, S4 and S15. 2. Four temperature-sensitive mitochondrial mutations have been localized in the region of the gene coding for the large mitochondrial ribosomal RNA (23S). These mutants all showed a marked anomaly in the mitochondrial large ribosomal subunit (50S) and/or the corresponding 23S ribosomal RNA.  相似文献   

6.
The involvement of mitochondrial protein synthesis in the assembly of the mitochondrial ribosomes was investigated by studying the extent to which the assembly process can proceed in petite mutants of Saccharomyces cerevisiae which lack mitochondrial protein synthetic activity due to the deletion of some tRNA genes and/or one of the rRNA genes on the mtDNA. Petite strains which retain the 15-S rRNA gene can synthesize this rRNA species, but do not contain any detectable amounts of the small mitochondrial ribosomal subunit. Instead, a ribonucleoparticle with a sedimentation coefficient of 30 S (instead of 37 S) was observed. This ribonucleoparticle contained all the small ribosomal subunit proteins with the exception of the var1 and three to five other proteins, which indicates that the 30-S ribonucleoparticle is related to the small mitochondrial ribosomal subunit (37 S). Reconstitution experiments using the 30-S particle and the large mitochondrial ribosomal subunit from a wild-type yeast strain indicate that the 30-S particle is not active in translating the artificial message poly(U). The large mitochondrial ribosomal subunit was present in petite strains retaining the 21-S rRNA gene. The petite 54-S subunit is biologically active in the translation of poly(U) when reconstituted with the small subunit (37 S) from a wild-type strain. The above results indicate that mitochondrial protein synthetic activity is essential for the assembly of the mature small ribosomal subunit, but not for the large subunit. Since the var1 protein is the only mitochondrial translation product known to date to be associated with the mitochondrial ribosomes, the results suggest that this protein is essential for the assembly of the mature small subunit.  相似文献   

7.
Full-length cDNAs of four new genes encoding cytoplasmic ribosomal proteins L14 and L20 (large ribosomal subunit) and S1 and S27 (small ribosomal subunit) were isolated and sequenced during the analysis of the fission yeast Schizosaccharomyces pombe genome. One of the Sz. pombe genes encoding translation elongation factor EF-2 was also cloned and its precise position on chromosome I established. A unified nomenclature was proposed, and the list of all known genetic determinants encoding cytoplasmic ribosomal proteins of Sz. pombe was compiled. By now, 76 genes/cDNAs encoding different ribosomal proteins have been identified in the fission yeast genome. Among them, 35 genes are duplicated and three homologous genes are identified for each of the ribosomal proteins L2, L16, P1, and P2.  相似文献   

8.
The binding site for eIF-3 on the small ribosomal subunit was studied (a) by use of a complex of eIF-3 and derived 40 S ribosomal subunit from rat liver, and (b) by use of native small ribosomal subunits from rabbit reticulocytes. After treatment of both complexes with dimethyl 4,7-dioxo-5,6-dihydroxy-3,8-diazadecanbisimidate ribosomal proteins S3a, S4, S6, S7, S8, S9, S10, S23/24 and S27 became covalently linked to eIF-3 and were isolated together with the factor by gradient centrifugation. The ribosomal proteins were identified by two-dimensional polyacrylamide gel electrophoresis after periodate cleavage of the link(s).  相似文献   

9.
The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.  相似文献   

10.
Mitochondrial translation of the mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the action of three position activator proteins encoded in the nucleus of Saccharomyces cerevisiae. Some mutations affecting one of these activators, PET122, can be suppressed by mutations in an unlinked nuclear gene termed PET123. PET123 function was previously demonstrated to be required for translation of all mitochondrial gene products. We have now generated an antibody against the PET123 protein and have used it to demonstrate that PET123 is a mitochondrial ribosomal protein of the small subunit. PET123 appears to be present at levels comparable to those of other mitochondrial ribosomal proteins, and its accumulation is dependent on the presence of the 15S rRNA gene in mitochondria. Taken together with the previous genetic data, these results strongly support a model in which the mRNA-specific translational activator PET122 works by directly interacting with the small ribosomal subunit to promote translation initiation on the coxIII mRNA.  相似文献   

11.
Summary In spite of considerable effort there is still serious disagreement in the literature about the question of whether epitopes of ribosomal protein S4 are accessible for antibody binding on the intact small ribosomal subunit. We have attempted to resolve this issue using three independent approaches: (i) a re-investigation of the exposure and the location of epitopes of ribosomal protein S4 on the surface of the 30S subunit and 30S core particles of the E. coli ribosome, including rigorous controls of antibody specificity, (ii) a similar investigation of protein S4 from Bacillus stearothermophilus and (iii) the labelling of residue Cys-31 of E. coli S4 with a fluorescein derivative the accessibility of which towards a fluorescein-specific antibody was demonstrated directly by fluorimetry. In each of the three cases the antigen (E. coli S4, B. stearothermophilus S4 or fluorescein) was found to reside on the small lobe.  相似文献   

12.
Messenger RNA orients on the small ribosomal subunit by base pairing with a complementary sequence in ribosomal RNA. We have positioned this ribosomal RNA segment and thus oriented the mRNA using a new technique--localization of an antibody-recognizable modified complementary oligodeoxynucleotide by electron microscopy. A synthetic oligodeoxynucleotide complementary to the message-positioning ribosomal RNA sequence was modified at either or both ends with different antigenic markers. Electron microscopy of subunit-oligodeoxynucleotide-antibody complexes allowed separate placement of each terminal marker of the oligodeoxynucleotide probe. The 5'-end of the complementary sequence contacts the subunit at the platform tip (rRNA nucleotide 1542). The message then extends along the interior side of the platform to the level of the fork of the cleft separating the platform from the subunit body, and displaced slightly to the convex side of the platform (rRNA nucleotide 1531). Based on our results and data from other laboratories, we propose a model for the positioning of messenger RNA on the 30 S subunit.  相似文献   

13.
Mitochondrial ribosomal proteins were studied best in yeast, where the small subunit was shown to contain about 35 proteins. Yet, genetic and biochemical studies identified only 14 proteins, half of which were predictable by sequence homology with prokaryotic ribosomal components of the small subunit. Using a recently described affinity purification technique and tagged versions of yeast Ykl155c and Mrp1, we isolated this mitochondrial ribosomal subunit and identified a total of 20 proteins, of which 12 are new. For a subset of the newly described ribosomal proteins, we showed that they are localized in mitochondria and are required for the respiratory competency of the yeast cells. This brings to 26 the total number of proteins described as components of the mitochondrial small ribosomal subunit. Remarkably, almost half of the previously and newly identified mitochondrial ribosomal components showed no similarity to any known ribosomal protein. Homologues could be found, however, in predicted protein sequences from Schizosaccharomyces pombe. In more distant species, putative homologues were detected for Ykl155c, which shares conserved motifs with uncharacterized proteins of higher eukaryotes including humans. Another newly identified ribosomal protein, Ygl129c, was previously shown to be a member of the DAP-3 family of mitochondrial apoptosis mediators.  相似文献   

14.
G Freyssinet 《Biochimie》1977,59(7):597-610
Active cytoplasmic ribosone subunits 41 and 62S were prepared by treatment with 0.1 mM puromycin in the presence of 265 mM KCl. Active chloroplast subunits 32 and 49S were obtained after dialysis of chloroplast ribosomal preparations against 1 mM Mg(2+)-containing buffer. Proteins from these different ribosomal particles were mapped by two-dimensional gel electrophoresis in the presence of urea. The 41S small cytoplasmic ribosomal subunit contains 33-36 proteins, the 62S large cytoplasmic ribosomal subunit contains 37-43, the 32S small chloroplast ribosomal subunit contains 22-24, and the 49ts large chloroplast ribosomal subunit contains 30-34 proteins. Since some proteins are lost during dissociation of monosomes into subunits, the 89S cytoplasmic monosome would have 73-83 proteins and the 68S chloroplast monosome, 56-60. The amino acid composition of ribosomal proteins shows differences between chloroplast and cytoplasmic ribosomes.  相似文献   

15.
Addition of poly(U) to complexes of 40S and 60S subunits of rat liver ribosomes decreases the substitution of amino groups of 12 proteins of the small ribosomal subunit and of 11 proteins of the large subunit by [14C]-methyl acetimidate. When comparing the results obtained with this amino group specific reagent with the reactivity of the proteins against iodoacetamide it becomes obvious that 4 proteins of the small ribosomal subunit (S12, 18, 19, 24) and 3 proteins of the large one (L20, 22, 25) are partially protected by poly(U) against reaction with both reagents.  相似文献   

16.
Antibiotic resistance, along with the resolution of antibiotic-ribosomal subunit complexes at the atomic level, has provided new insights into modifications of clinically relevant antimicrobials that target the ribosome. Modifications to the aminoglycoside or negamycin scaffolds have been reported in the past, but few derivatives appear to be greatly improved compared to their parent compound. Computational and/or traditional screening efforts have yielded novel compounds that bind to the decoding site of the small (30S) ribosomal subunit; naphthyridones appear to bind only in the presence of poly(U) and tRNA(Phe), whereas quinolines bind in a similar manner to aminoglycosides. Streptogramin B analogs were designed that have an amide replacement of the labile ester bond. The resultant molecules were not substrates for the inactivating lyase, but were no longer inhibitors of translation. The synthesis of 16-membered macrolides that are modified at the C6 position with peptidyl moieties as well as conjugates of chloramphenicol to either nucleotide groups or pyrene have been described, but no antibacterial activity has been reported. X-ray crystal structures are now available that can be used to improve on natural or synthetic antibiotics that bind to either the 30S or the 50S ribosomal subunit.  相似文献   

17.
Polyclonal antibodies were elicited against seven of the 33 different proteins of the large subunit of the chloroplast ribosome from Chlamydomonas reinhardtii. Three of these proteins are synthesized in the chloroplast and four are made in the cytoplasm and imported. In western blots, six of the seven antisera are monospecific for their respective large subunit ribosomal proteins, and none of these antisera cross-reacted with any chloroplast small subunit proteins from C. reinhardtii. Antisera to the three chloroplast-synthesized ribosomal proteins cross-reacted with specific Escherichia coli large subunit proteins of comparable charge and molecular weight. Only one of the four antisera to the chloroplast ribosomal proteins synthesized in the cytoplasm cross-reacted with an E. coli large subunit protein. None of the antisera cross-reacted with any E. coli small subunit proteins. On the assumption of a procaryotic, endosymbiotic origin for the chloroplast, those chloroplast ribosomal proteins still synthesized within the organelle appear to have retained more antigenic sites in common with E. coli ribosomal proteins than have those which are now the products of cytoplasmic protein synthesis. Antisera to this cytoplasmically synthesized group of chloroplast ribosomal proteins did not recognize any antigenic sites among C. reinhardtii cytoplasmic ribosomal proteins, suggesting that the genes for the cytoplasmically synthesized chloroplast ribosomal proteins either are not derived from the cytoplasmic ribosomal protein genes or have evolved to a point where no antigenic similarities remain.   相似文献   

18.
The methylated neutral amino acids from both 30S and 50S ribosomal subunits of an Escherichia coli K strain were characterized. The 50S ribosomal subunit contains three methylated neutral amino acids: N-monomethylalanine, N-monomethylmethionine, and an as yet unidentified methylated amino acid found in protein L11. Both N-monomethylalanine and N-monomethylmethionine were found in protein L33. The amount of N-monomethylmethionine in this protein, however, is variable but not more than 0.25 molecules per protein. Thus protein L33 from this E. coli K strain has heterogeneity in its N-terminal amino acid and can start with either N-monomethylalanine or N-monomethylmethionine. The N-monomethylmethionine residue was not derived from the reduction of N-formylmethionine in the protein. The 30S ribosomal subunit contains only one methylated neutral amino acid: N-monomethylalanine.  相似文献   

19.
Procedures were developed exploiting organometallic clusters and coordination compounds in combination with heavy metal salts for derivatization of ribosomal crystals. These enabled the construction of multiple isomorphous replacement (MIR) and multiple isomorphous replacement combined with anomalous scattering medium-resolution electron density maps for the ribosomal particles that yield the crystals diffracting to the highest resolution, 3 A, of the large subunit from Haloarcula marismortui and the small subunit from Thermus thermophilus. The first steps in the interpretation of the 7. 3-A MIR map of the small subunit were made with the aid of a tetrairidium cluster that was covalently attached to exposed sulfhydryls on the particle's surface prior to crystallization. The positions of these sulfhydryls were localized in difference Fourier maps that were constructed with the MIR phases.  相似文献   

20.
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号