首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The L and NS proteins of vesicular stomatitis virus were purified from transcribing ribonucleoprotein complex and were used to study their requirements and functions during reconstitution of RNA synthesis in vitro. The requirements for L and NS proteins for optimal RNA synthesis were found to be catalytic and stoichiometric, respectively. Addition of increasing amounts of NS protein to N-RNA template and saturating L protein, the ratio of N-mRNA to leader RNA synthesis increased linearly. In contrast, when the concentration of L protein was increased the corresponding ratio remained constant. These results, coupled with the observation that the L protein is involved in the initiation of RNA synthesis, suggest that the NS protein is involved in the RNA chain elongation step. The NS protein possibly interacts with both the L protein and the template N-RNA and unwinds the latter to facilitate the movement of L protein on the template RNA.  相似文献   

3.
4.
5.
The T4 bacteriophage dda protein is a DNA-dependent ATPase and DNA helicase that is the product of an apparently nonessential T4 gene. We have examined its effects on in vitro DNA synthesis catalyzed by a purified, multienzyme T4 DNA replication system. When DNA synthesis is catalyzed by the T4 DNA polymerase on a single-stranded DNA template, the addition of the dda protein is without effect whether or not other replication proteins are present. In contrast, on a double-stranded DNA template, where a mixture of the DNA polymerase, its accessory proteins, and the gene 32 protein is required, the dda protein greatly stimulates DNA synthesis. The dda protein exerts this effect by speeding up the rate of replication fork movement; in this respect, it acts identically with the other DNA helicase in the T4 replication system, the T4 gene 41 protein. However, whereas a 41 protein molecule remains bound to the same replication fork for a prolonged period, the dda protein seems to be continually dissociating from the replication fork and rebinding to it as the fork moves. Some gene 32 protein is required to observe DNA synthesis on a double-stranded DNA template, even in the presence of the dda protein. However, there is a direct competition between this helix-destabilizing protein and the dda protein for binding to single-stranded DNA, causing the rate of replication fork movement to decrease at a high ratio of gene 32 protein to dda protein. As shown elsewhere, the dda protein becomes absolutely required for in vitro DNA synthesis when E. coli RNA polymerase molecules are bound to the DNA template, because these molecules otherwise stop fork movement (Bedinger, P., Hochstrasser, M., Jongeneel, C.V., and Alberts, B. M. (1983) Cell 34, 115-123).  相似文献   

6.
The NS5B protein of the hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) (S.-E. Behrens, L. Tomei, and R. De Francesco, EMBO J. 15:12-22, 1996) that is assumed to be required for replication of the viral genome. To further study the biochemical and structural properties of this enzyme, an NS5B-hexahistidine fusion protein was expressed with recombinant baculoviruses in insect cells and purified to near homogeneity. The enzyme was found to have a primer-dependent RdRp activity that was able to copy a complete in vitro-transcribed HCV genome in the absence of additional viral or cellular factors. Filter binding assays and competition experiments showed that the purified enzyme binds RNA with no clear preference for HCV 3'-end sequences. Binding to homopolymeric RNAs was also examined, and the following order of specificity was observed: poly(U) > poly(G) > poly(A) > poly(C). An inverse order was found for the RdRp activity, which used poly(C) most efficiently as a template but was inactive on poly(U) and poly(G), suggesting that a high binding affinity between polymerase and template interferes with processivity. By using a mutational analysis, four amino acid sequence motifs crucial for RdRp activity were identified. While most substitutions of conserved residues within these motifs severely reduced the enzymatic activities, a single substitution in motif D which enhanced the RdRp activity by about 50% was found. Deletion studies indicate that amino acid residues at the very termini, in particular the amino terminus, are important for RdRp activity but not for RNA binding. Finally, we found a terminal transferase activity associated with the purified enzyme. However, this activity was also detected with NS5B proteins with an inactive RdRp, with an NS4B protein purified in the same way, and with wild-type baculovirus, suggesting that it is not an inherent activity of NS5B.  相似文献   

7.
Protein Kinase and Phosphoproteins of Vesicular Stomatitis Virus   总被引:28,自引:25,他引:3       下载免费PDF全文
Protein kinases of similar but not identical activity were found associated with vesicular stomatitis (VS) virions grown in mouse L cells, primary chicken embryo (CE) cells, and BHK-21 cells, as well as being present in VS virions grown in HeLa and Aedes albopictus cells. The virion kinase preferentially phosphorylated the nucleocapsid NS protein in vitro and to a lesser extent the envelope M protein. Other virion proteins were phosphorylated in vitro only after drastic detergent treatment. Partial evidence that the virion kinase is of cellular origin was obtained by finding reduced enzyme activity in virions released from cells pretreated with actinomycin D and cycloheximide. Selective detergent and detergent-salt fractionation of VS virions revealed that the kinase activity was present in the envelope but not the spikes. The virion kinase activity in a Triton-salt-solubilized envelope fraction could be separated from M and G proteins and partially purified by phosphocellulose column chromatography. Virions released from L, CE, and BHK-21 cells infected in the presence of [(32)P]orthophosphate were labeled almost exclusively in the NS protein. Both soluble and nucleocapsid-associated NS phosphoprotein were present in cytoplasmic extracts of VS viral-infected L cells. The origin and function of the NS phosphoprotein remain to be elucidated.  相似文献   

8.
The variety of applications utilizing molecularly imprinted polymers (MIPs) requires synthetic strategies yielding different MIP formats including films, irregular particles, or spheres, along with precise knowledge on the specific material characteristics, such as binding capacity and binding efficiency of these materials. In response to this demand, MIPs are prepared in different formats by variation of the polymerization methodology. It is commonly agreed that micro- and sub-microspheres are particularly advantageous MIP formats, due to their monodispersity and facile synthesis procedures in contrast to conventional imprinted polymers prepared by bulk polymerization. However, the differences in actual rebinding characteristics of different MIP formats based on molecular interactions under a variety of binding/rebinding conditions have not been studied in detail to date. Consequently, the present work details an analytical strategy generically applicable to MIP systems for rebinding studies including equilibrium binding, non-equilibrium binding, and release experiments enabling more profound understanding on the molecular interactions between the imprinted materials and the template molecules. In this study, three MIP formats were considered for the same template molecule, 17beta-estradiol: irregularly shaped particulate polymers prepared by bulk polymerization and grinding, microspheres, and sub-microspheres. The latter two formats were synthesized via precipitation polymerization using different processing strategies. The morphologies and porosities of the resulting imprinted materials were characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, respectively. The obtained results indicate that microspheres prepared by precipitation polymerization provide superior rebinding properties during equilibrium binding in contrast to bulk polymers and sub-microspheres, and that the rebinding properties are different during equilibrium binding versus non-equilibrium binding. The median binding affinity constant determined during non-equilibrium rebinding is higher than the values obtained from equilibrium rebinding. Furthermore, the binding site distribution appears more homogeneous thief derived from non-equilibrium rebinding, as reflected in a heterogeneity index of m=0.725. Moreover, it is hypothesized that the specific interactions between template and monomers are related to the porosity of the imprinted polymers, which implies that the amount of binding sites and the pore sized distribution of the imprinted materials are a critical factor in achieving the desired MIP performance in various analytical applications. The BET results indicate that particles prepared with lower cross-linker-to-template ratio have a reduced surface area. Furthermore, it can be expected that there are less specific binding sites available at particles with reduced surface area and pore volume given similar distribution of the binding sites, as confirmed by the equilibrium binding isotherm studies. The pore size distribution results reveal that control of the pore size in the range of 100-180 A is essential to obtain the desired retention properties and Gaussian peak shape during HPLC analysis of small molecules.  相似文献   

9.
10.
D Chattopadhyay  A K Banerjee 《Cell》1987,49(3):407-414
We have investigated the functional significance of phosphoserine residues that lie in the L protein-binding domain between amino acids 213 and 247 of the phosphoprotein (NS) of vesicular stomatitis virus. A series of mutant NS proteins were made by cell-free translation of mRNAs transcribed from the cloned gene. Site-directed substitution of alanine for both serine 236 and serine 242 essentially abolished RNA synthesis catalyzed by the NS-L complex. Substitution of either of these serines reduced RNA synthesis by 75%. Serine 218 played no major role in RNA synthesis. Phosphorylation of NS by the L protein was abrogated by substitution of either serine 236 or serine 242. These results indicate that phosphorylation of serines 236 and 242 in the NS protein regulates its binding with the L protein and the N-RNA template and is essential for activation of viral RNA synthesis.  相似文献   

11.
12.
13.
Hepatitis C virus (HCV) RNA synthesis takes place on a detergent resistant membrane (DRM) structure. To identify potential cellular proteins related to HCV replication complexes (RC), we purified DRMs from HCV subgenomic replicon cells and its parental Huh7 cells. The proteins of DRM fractions were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. Comparing with parental Huh7 cells, 60 proteins were up-regulated while 14 proteins were down-regulated in HCV replicon cells. Ras-GTPase-activating protein binding protein 1 (G3BP1), one of the elevated proteins, was found to be associated with HCV NS5B and knockdown of G3BP1 by siRNA in HCV replicon cells significantly reduced HCV replication, which may indicate it a potential component of HCV RC. These results suggest that HCV viral gene and proteins may regulate the presence of host cellular proteins in DRM, ensure appropriate concentrations of replication components, and hence control the rates or efficiencies of HCV replication.  相似文献   

14.
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers.  相似文献   

15.
The non-structural (NS) proteins of parvoviruses are involved in essential steps of the viral life cycle. Various biochemical functions, such as ATP binding, ATPase, site-specific DNA binding and nicking, and helicase activities, have been assigned to the protein NS1. Compared with the non-structural proteins of the vertebrate parvoviruses, the NS proteins of the Densovirinae have not been well characterized. Here, we describe the biochemical properties of NS1 of Periplaneta fuliginosa densovirus (PfDNV). We have expressed and purified NS1 using a baculovirus system and analyzed its enzymatic activity. The purified recombinant NS1 protein possesses ATPase- and ATP- or dATP-dependent helicase activity requiring either Mg(2+) or Mn(2+) as a cofactor. The ATPase activity of NS1 can be efficiently stimulated by single-stranded DNA. The ATPase coupled helicase activity was detected on blunt-ended double-stranded oligonucleotide substrate. Using South-Western and Dot-spot assays, we identified a DNA fragment that is recognized specifically by the recombinant NS1 protein. The fragment consists of (CAC)(4) and is located on the hairpin region of the terminal palindrome. The domain for DNA binding was defined to the amino-terminal region (amino acids 1-250). In addition, we found that NS1 can form oligomeric complexes in vivo and in vitro. Mutagenesis analysis showed that ATP binding is necessary for oligomerization. Based on these results, it seems that PfDNV NS1, a multifunctional protein, plays an important role in viral DNA replication comparable to those of vertebrate parvovirus initiator proteins.  相似文献   

16.
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B post-transfusion hepatitis. Its genome, a (+)-stranded RNA molecule of approximately 9.4 kb, encodes a large polyprotein that is processed by viral and cellular proteases into at least nine different viral polypeptides. As with other (+)-strand RNA viruses, the replication of HCV is thought to proceed via the initial synthesis of a complementary (-) RNA strand, which serves, in turn, as a template for the production of progeny (+)-strand RNA molecules. An RNA-dependent RNA polymerase has been postulated to be involved in both of these steps. Using the heterologous expression of viral proteins in insect cells, we present experimental evidence that an RNA-dependent RNA polymerase is encoded by HCV and that this enzymatic activity is the function of the 65 kDa non-structural protein 5B (NS5B). The characterization of the HCV RNA-dependent RNA polymerase product revealed that dimer-sized hairpin-like RNA molecules are generated in vitro, indicating that NS5B-mediated RNA polymerization proceeds by priming on the template via a 'copy-back' mechanism. In addition, the purified HCV NS5B protein was shown to perform RNA- or DNA oligonucleotide primer-dependent RNA synthesis on templates with a blocked 3' end or on homopolymeric templates. These results represent a first important step towards a better understanding of the life cycle of the HCV.  相似文献   

17.
Cai Z  Yi M  Zhang C  Luo G 《Journal of virology》2005,79(18):11607-11617
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is the virus-encoded RNA-dependent RNA polymerase (RdRp) essential for HCV RNA replication. An earlier crystallographic study identified a rGTP-specific binding site lying at the surface between the thumb domain and the fingertip about 30 A away from the active site of the HCV RdRp (S. Bressanelli, L. Tomei, F. A. Rey, and R. De Francesco, J. Virol 76:3482-3492, 2002). To determine its physiological importance, we performed a systematic mutagenesis analysis of the rGTP-specific binding pocket by amino acid substitutions. Effects of mutations of the rGTP-specific binding site on enzymatic activity were determined by an in vitro RdRp assay, while effects of mutations on HCV RNA replication were examined by cell colony formation, as well as by transient replication of subgenomic HCV RNAs. Results derived from these studies demonstrate that amino acid substitutions of the rGTP-specific binding pocket did not significantly affect the in vitro RdRp activity of purified recombinant NS5B proteins, as measured by their abilities to synthesize RNA on an RNA template containing the 3' untranslated region of HCV negative-strand RNA. However, most mutations of the rGTP-specific binding site either impaired or completely ablated the ability of subgenomic HCV RNAs to induce cell colony formation. Likewise, these mutations caused either reduction in or lethality to transient replication of the human immunodeficiency virus Tat-expressing HCV replicon RNAs in the cell. Collectively, these findings demonstrate that the rGTP-specific binding site of the HCV NS5B is not required for in vitro RdRp activity but is important for HCV RNA replication in vivo.  相似文献   

18.
The RNA-dependent RNA polymerase encoded by the hepatitis C virus (HCV) NS5B gene has been expressed as a nonfusion protein in bacterial cells and purified to homogeneity using sequential chromatographic columns. The purified NS5B protein exhibited RNA-dependent RNA polymerase activity using poly(A) template and the K(m) and V(max) were determined as 8.4 microM and 1976 pmol/mg-min, respectively. This full-length NS5B protein exhibited much stronger binding affinity toward the 30-mer poly(G) than other homopolymeric RNAs of the same size. For the first time, we demonstrate that the HCV NS5B was able to bind various ribonucleotides. Using a panel of oligonucleotides varying in length, we studied the NS5B catalytic efficiency and proposed the size of the NS5B active site to be 8-10 nucleotides. The multifunctional nature of NS5B protein is also discussed and compared with other viral RNA polymerases.  相似文献   

19.
Gwack Y  Yoo H  Song I  Choe J  Han JH 《Journal of virology》1999,73(4):2909-2915
Hepatitis G virus (HGV) nonstructural protein 3 (NS3) contains amino acid sequence motifs typical of ATPase and RNA helicase proteins. In order to examine the RNA helicase activity of the HGV NS3 protein, the NS3 region (amino acids 904 to 1580) was fused with maltose-binding protein (MBP), and the fusion protein was expressed in Escherichia coli and purified with amylose resin and anion-exchange chromatography. The purified MBP-HGV/NS3 protein possessed RNA-stimulated ATPase and RNA helicase activities. Characterization of the ATPase and RNA helicase activities of MBP-HGV/NS3 showed that the optimal reaction conditions were similar to those of other Flaviviridae viral NS3 proteins. However, the kinetic analysis of NTPase activity showed that the MBP-HGV/NS3 protein had several unique properties compared to the other Flaviviridae NS3 proteins. The HGV NS3 helicase unwinds RNA-RNA duplexes in a 3'-to-5' direction and can unwind RNA-DNA heteroduplexes and DNA-DNA duplexes as well. In a gel retardation assay, the MBP-HGV/NS3 helicase bound to RNA, RNA/DNA, and DNA duplexes with 5' and 3' overhangs but not to blunt-ended RNA duplexes. We also found that the conserved motif VI was important for RNA binding. Further deletion mapping showed that the RNA binding domain was located between residues 1383 and 1395, QRRGRTGRGRSGR. Our data showed that the MBP-HCV/NS3 protein also contains the RNA binding domain in the similar domain.  相似文献   

20.
The recent demonstration that the NS5A protein of hepatitis C virus (HCV) contains an unconventional zinc-binding site with the format Cx(17)CxCx(20)C and the presence of a similar sequence element in the NS5A proteins of members of the Pestivirus genus has led to the hypothesis that the NS5A protein of the pestivirus bovine viral diarrhea virus (BVDV) is a zinc-binding protein. A method for the expression and partial purification of BVDV NS5A was developed, and the partially purified protein was analyzed for zinc content by atomic absorption spectroscopy. BVDV NS5A was found to coordinate a single zinc atom per protein molecule. Mutation of any of the four cysteines of the predicted zinc-binding motif eliminated zinc coordination. Furthermore, analysis of mutations at these cysteine residues in the context of a BVDV replicon system indicated that these residues were absolutely essential for RNA replication. The recently determined crystal structure of the N-terminal zinc-binding domain of the HCV NS5A protein, combined with secondary structure predictions of the region surrounding the mapped BVDV zinc-binding region, indicates that the BVDV zinc-binding motif fits the general template Cx(22)CxCx(24)C and likely comprises a three-stranded antiparallel beta-sheet fold. These data highlight the similarities between the Hepacivirus and Pestivirus NS5A proteins and suggest that both proteins perform a not-yet-defined function in RNA replication that requires coordination of a single zinc atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号