首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the Ca2+-bound and Ca2+-free forms of alpha-lactalbumin can assume essentially the same folded conformation as evidenced by similarity in their CD and proton n.m.r. spectra. Thermal unfolding followed by the aromatic CD has shown that the stability of the folded state is markedly enhanced by Ca2+ and that the stabilization is almost entirely entropic; addition of 0.1 mM Ca2+ shifts the transition temperature from 40 degrees to 62 degrees in 0.1M Na+ at pH 7.0. The enthalpy change of the unfolding, coincident between the two forms, is, however, significantly smaller than that known for lysozyme. The n.m.r. spectrum under the condition that both the forms of the protein are in the folded state reflects minor environmental changes of certain protons upon Ca2+ binding, and these changes are shown to afford useful probes for assessment of the location of the binding site. From the pH dependence and temperature dependence of the spectrum and also by using spin decoupling in the aromatic region (6.4-8.7 p.p.m.), it is shown that none of histidyl residues are affected and that at least two tryptophanyl ring protons experience environmental changes upon Ca2+ binding to the folded apo-protein. Effect of free excess Ca2+ on the spectrum has also shown that in native alpha-lactalbumin there is only one Ca2+-binding site that is detectable by the present method.  相似文献   

2.
Pathogenic Leptospira spp. express immunoglobulin-like proteins, LigA and LigB, which serve as adhesins to bind to extracellular matrices and mediate their attachment on host cells. However, nothing is known about the mechanism by which these proteins are involved in pathogenesis. We demonstrate that LigBCen2 binds Ca(2+), as evidenced by inductively coupled plasma optical emission spectrometry, energy dispersive spectrometry, (45)Ca overlay, and mass spectrometry, although there is no known motif for Ca(2+) binding. LigBCen2 binds four Ca(2+) as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The dissociation constant, K(D), for Ca(2+) binding is 7 mum, as measured by isothermal titration calorimetry and calcium competition experiments. The nature of the Ca(2+)-binding site in LigB is possibly similar to that seen in the betagamma-crystallin superfamily, since structurally, both families of proteins possess the Greek key type fold. The conformation of LigBCen2 was significantly influenced by Ca(2+) binding as shown by far- and near-UV CD and by fluorescence spectroscopy. In the apo form, the protein appears to be partially unfolded, as seen in the far-UV CD spectrum, and upon Ca(2+) binding, the protein acquires significant beta-sheet conformation. Ca(2+) binding stabilizes the protein as monitored by thermal unfolding by CD (50.7-54.8 degrees C) and by differential scanning calorimetry (50.0-55.7 degrees C). Ca(2+) significantly assists the binding of LigBCen2 to the N-terminal domain of fibronectin and perturbs the secondary structure, suggesting the involvement of Ca(2+) in adhesion. We demonstrate that LigB is a novel bacterial Ca(2+)-binding protein and suggest that Ca(2+) binding plays a pivotal role in the pathogenesis of leptospirosis.  相似文献   

3.
N Bettache  R Bertrand  R Kassab 《Biochemistry》1990,29(38):9085-9091
We have investigated various structural and interaction properties of maleimidobenzoyl-G-actin (MBS-actin), a new, internally cross-linked G-actin derivative that does not exhibit, at moderate protein concentration, the salt--and myosin subfragment 1 (S-1)-induced polymerizations of G-actin and reacts reversibly and covalently in solution with S-1 at or near the F-actin binding region of the heavy chain (Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032). The far-ultraviolet CD spectrum and alpha-helix content of the MBS-actin were identical with those displayed by native G-actin. 45Ca2+ measurements showed the same content of tightly bound Ca2+ in MBS-actin as in G-actin and the EDTA treatment of the modified protein promoted the same red shift of the intrinsic fluorescence spectrum as observed with native G-actin. Incubation of concentrated MBS-actin solutions with 100 mM KCl + 5 mM MgCl2 led to the polymerization of the actin derivative when the critical monomer concentration reached 1.6 mg/mL, at 25 degrees C, pH 8.0. The MBS-F-actin formed activated the Mg2(+)-ATPase of S-1 to the same extent as native F-actin. The MBS-G-actin exhibited a DNase I inhibitor activity very close to that found with native G-actin and was not to be at all affected by its specific covalent conjugation to S-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ca2+ or Cd2+ binding and the conformational change induced by the metal binding in two frog bone Gla-proteins (BGP, termed BGP-1 and BGP-2) were studied by equilibrium dialysis and CD measurement. By CD measurement in the far-ultraviolet region, the alpha-helix content of both apoBGPs was found to be 8%. Binding of both Ca2+ and Cd2+ was accompanied with a change in the CD spectrum, and the alpha-helix content increased to 15 and 25% for BGP-1 and BGP-2, respectively. CD measurement in the near-ultraviolet region indicated that the environment of aromatic amino acid residues in the protein molecule was changed by metal binding. Equilibrium dialysis experiments indicated that each of these two protein binds specifically 2 mol of Ca2+, and nonspecifically an additional 3-4 mol of Ca2+ in 0.02 M Tris-HCl/0.15 M NaCl (pH 7.4), at 4 degrees C. According to the two separate binding sites model, BGP-1 has 1 high-affinity Ca2+ binding site (Kd1 = 0.17 mM) and 1 low-affinity site (Kd2 = 0.29 mM), and BGP-2 contains 1 high-affinity site (Kd1 = 0.14 mM) and 1 low-affinity site (Kd2 = 0.67 mM). In addition, 2 Cd2+ bound to a high-affinity binding site on BGP-1 with Kd1 of 10.4 microM, and 1 Cd2+ bound to a low-affinity binding site with Kd2 of 41.5 microM. On the other hand, BGP-2 had three classes of binding sites and 1 Cd2+ bound to each binding site with Kd1 = 3.6 microM, Kd2 = 16.3 microM, Kd3 = 51.7 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Neuronal calcium sensor-1, a protein of calcium sensor family, is known to have four structural EF-hands. We have synthesised peptides corresponding to all the four EF-hands and studied their conformation and calcium-binding. Our data confirm that the first putative site, a non-canonical one (EF1), does not bind calcium. We have investigated if this lack of binding is due to the presence of non-favoured residues (particularly at +x and -z co-ordinating positions) of the loop. We have mutated these residues and found that after modification the peptides bound calcium. However, these mutated peptides (EF1 and its functional mutants) do not show any Ca(2+) induced changes in far-UV CD. EF2, EF3, and EF4 peptides bind Ca(2+), EF3 being the strongest binder, followed by EF4. Our data of Ca(2+)-binding to individual EF peptides show that there are three active Ca(2+)-binding sites in NCS-1. We have also studied the binding of a neuroleptic drug, chlorpromazine, with the protein as well as with its EF-hands. CPZ binds myristoylated as well as non-myristoylated NCS-1 in Ca(2+)-dependent manner, with dynamic interaction to myristoylated protein. CPZ does not bind to EF1, but binds to functional EF-hand peptides and induces changes in far-UV CD. Our results suggest that NCS-1 could be a target of such antipsychotic and neuroleptic drugs.  相似文献   

6.
The extent of hydrophobic exposure upon bis-ANS binding to the functional apical domain fragment of GroEL, or minichaperone (residues 191-345), was investigated and compared with that of the GroEL tetradecamer. Although a total of seven molecules of bis-ANS bind cooperatively to this minichaperone, most of the hydrophobic sites were induced following initial binding of one to two molecules of probe. From the equilibrium and kinetics studies at low bis-ANS concentrations, it is evident that the native apical domain is converted to an intermediate conformation with increased hydrophobic surfaces. This intermediate binds additional bis-ANS molecules. Tyrosine fluorescence detected denaturation demonstrated that bis-ANS can destabilize the apical domain. The results from (i) bis-ANS titrations, (ii) urea denaturation studies in the presence and absence of bis-ANS, and (iii) intrinsic tyrosine fluorescence studies of the apical domain are consistent with a model in which bis-ANS binds tightly to the intermediate state, relatively weakly to the native state, and little to the denatured state. The results suggest that the conformational changes seen in apical domain fragments are not seen in the intact GroEL oligomer due to restrictions imposed by connections of the apical domain to the intermediate domain and suppression of movement due to quaternary structure.  相似文献   

7.
The calcium-binding protein S100P has been found to be associated with human prostate cancer. We have overexpressed S100P in Escherichia coli using a T7 expression system. A rapid two-step procedure for the isolation of overexpressed S100P leads to a preparation of >95% pure protein with a yield of approximately 150 mg per liter of culture. The structural integrity of recombinant S100P was analyzed using CD and fluorescence spectroscopic techniques. The far-UV CD shows that secondary structure of recombinant S100P consists predominantly of a-helical structure. Both near-UV CD and tyrosine fluorescence spectra show that aromatic residues are involved in the formation of a specific, well packed structure, indicating that the recombinant S100P protein adopts a compact folded conformation. Ca2+ has a profound effect on S100P structure. Near-UV CD and fluorescence intensity of both internal (tyrosine) and external (ANS) probes suggest significant structural rearrangements in the tertiary structure of the molecule. The similarity of far-UV CD spectrum of S100P in the presence and in the absence of Ca2+ suggests that Ca2+ binding has only minor effects on secondary structure.  相似文献   

8.
The interaction of the isolated EF-hand domain of phospholipase C delta1 with arachidonic acid (AA) was characterized using circular dichroism (CD) and fluorescence spectroscopy. The far-UV CD spectral changes indicate that AA binds to the EF domain. The near-UV CD spectra suggest that the orientations of aromatic residues in the peptide are affected when AA binds to the protein. The fluorescence of the single intrinsic tryptophan located in EF1 was enhanced by the addition of dodecylmaltoside (DDM) and AA suggesting that this region of the protein is involved in hydrophobic interactions. In the presence of a low concentration of DDM it was found that AA induced a change in fluorescence resonance energy transfer, which is indicative of a conformational change. The lipid induced conformational change may play a role in calcium binding because the isolated EF-hand domain did not bind Ca2+ in the absence of lipids, but Ca2+-dependent changes in the intrinsic tryptophan emission were observed when free fatty acids were present. These studies identify specific EF-hand domains as allosteric regulatory domains that require hydrophobic ligands such as lipids.  相似文献   

9.
Comparison of the binding of Na+ and Ca2+ to bovine alpha-lactalbumin   总被引:2,自引:0,他引:2  
alpha-Lactalbumin is a metal-binding protein which binds Ca2+- and Na+-ions competitively to one specific site, giving rise to a large conformational change of the protein. For this reason, the enthalpy change of binding Ca2+ to apo-alpha-lactalbumin (delta Ho) is strongly dependent on the concentration of Na+ ions in the medium. From that relationship a molar enthalpy of -145 +/- 3 kJ X mol-1 is calculated for the Ca2+-binding at pH 7.4 and 25 degrees C, while a delta Ho of -5 +/- 3 kJ X mol-1 is found to substitute a complexed Na+ by a Ca2+-ion. These measurements also allowed us to calculate a binding constant for Na+ of 195 +/- 18 M-1. The molar enthalpy of Na+-loading was found to be -142 +/- 3 kJ X mol-1, a value very close to delta Ho of the binding of Ca2+ to alpha-lactalbumin. Both enthalpy changes in binding Ca2+ and Na+ are independent of the protein concentration. These exothermic values are in agreement with the hypothesis that both Na+- and Ca2+-ions are able to induce the same conformational change in alpha-lactalbumin upon which hydrophobic regions are removed from the solvent, yielding a less hydrophobic protein. The latter is confirmed by means of affinity measurements of the hydrophobic fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalene sulphonate](bis-ANS) to alpha-lactalbumin. The association constant (Ka) decreased from (6.6 +/- 0.5) X 10(4) M-1 in the absence of NaCl to (2.7 +/- 0.2) X 10(4) M-1 in 75 mM NaCl, while the maximum intensity (Imax) of the binary bis-ANS-alpha-lactalbumin complex remained constant at 0.44 +/- 0.02 (arbitrary units). The Ka value of bis-ANS for Ca2+-alpha-lactalbumin was determined at (1.7 +/- 0.2) X 10(4) M-1 and Imax was 0.43 +/- 0.02 (arbitrary units). The difference in hydrophobicity between the two conformational states of the protein was further demonstrated by adsorption experiments of both conformers to phenyl-Sepharose. Apo-alpha-lactalbumin, hydrophobically bound to phenyl-Sepharose, can be eluted by adding Ca2- or Na+-solutions.  相似文献   

10.
From fluorescence measurements on mixtures of bis-ANS and equine lysozyme and from Ca(2+)-dependent hydrophobic interaction chromatography of equine lysozyme, it is demonstrated that Ca2+ binding induces a conformational change upon which hydrophobic regions in the protein become less accessible. Bis-ANS fluorescence titrations in the absence of Ca2+ and in 2 mM Ca2+ are also performed with equine alpha-lactalbumin variants B and C. These variants differ by an amino-acid exchange Asp----Ile at residue 95. The fluorescence titration curves indicate that the accessibility of the probe to the Ca2+ conformers is clearly influenced by the mutation. The Ca(2+)-dependent exclusion of a hydrophobic domain is used in a new and simplified method for preparing lysozyme and alpha-lactalbumins simultaneously from equine milk whey.  相似文献   

11.
Chedad A  Van Dael H 《Proteins》2004,57(2):345-356
The equilibrium unfolding and the kinetic folding and unfolding of goat alpha-lactalbumin (GLA) were studied by near- and far-ultraviolet circular dichroism (CD) and by stopped-flow fluorescence spectroscopy. Specifically, the influence of environmental conditions such as pH and Ca2+ binding was examined. Compared to the apo-form, the Ca2+-bound form was found to be strongly stabilized in equilibrium conditions at pH 7.5 and 25 degrees C. The kinetics of the refolding of apo-GLA show a major change of fluorescence intensity during the experimental dead-time, but this unresolved effect is strongly diminished in holo-GLA. In both cases, however, the chevron plots can adequately be fitted to a three-state model. Moreover, double-mix stopped-flow experiments showed that the native state (N) is reached through one major pathway without the occurrence of alternative tracks. In contrast to the homologous bovine alpha-lactalbumin (BLA), the compactness of GLA is strongly influenced by the presence of Ca2+ ions. Unlike the two-state transition observed in guanidine hydrochloride (GdnHCl)-induced equilibrium denaturation experiments at higher pH, an equilibrium intermediate state (I) is involved in denaturation at pH 4.5. In the latter case, analysis of the kinetic data makes clear that the intermediate and the unfolded states (U) show practically no Gibbs free energy difference and that they are in rapid equilibrium with each other. A possible explanation for these variations in stability and in folding characteristics with pH could be the degree of protonation of His107 that directly influences non-native interactions. Variation of environmental conditions and even small differences in sequence, therefore, can result in important effects on thermodynamic and folding parameters.  相似文献   

12.
Prion diseases are associated with conformational conversion of the cellular prion protein, PrPC, into a misfolded form, PrPSc. We have investigated the equilibrium unfolding of the structured domain of recombinant murine prion protein, comprising residues 121-231 (mPrP-(121-231)). The equilibrium unfolding of mPrP-(121-231) by urea monitored by intrinsic fluorescence and circular dichroism (CD) spectroscopies indicated a two-state transition, without detectable folding intermediates. The fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5-disulfonic acid (bis-ANS) binds to native mPrP-(121-231), indicating exposure of hydrophobic domains on the protein surface. Increasing concentrations of urea (up to 4 M) caused the release of bound bis-ANS, whereas changes in intrinsic fluorescence and CD of mPrP took place only above 4 M urea. This indicates the existence of a partially unfolded conformation of mPrP, characterized by loss of bis-ANS binding and preservation of the overall structure of the protein, stabilized at low concentrations of urea. Hydrostatic pressure and low temperatures were also used to stabilize partially folded intermediates that are not detectable in the presence of chemical denaturants. Compression of mPrP to 3.5 kbar at 25 degrees C and pH 7 caused a slight decrease in intrinsic fluorescence emission and an 8-fold increase in bis-ANS fluorescence. Lowering the temperature to -9 degrees C under pressure reversed the decrease in intrinsic fluorescence and caused a marked (approximately 40-fold) increase in bis-ANS fluorescence. The increase in bis-ANS fluorescence at low temperatures was similar to that observed for mPrP at 1 atm at pH 4. These results suggest that pressure-assisted cold denaturation of mPrP stabilizes a partially folded intermediate that is qualitatively similar to the state obtained at acidic pH. Compression of mPrP in the presence of a subdenaturing concentration of urea stabilized another partially folded intermediate, and cold denaturation under these conditions led to complete unfolding of the protein. Possible implications of the existence of such partially folded intermediates in the folding of the prion protein and in the conversion to the PrPSc conformer are discussed.  相似文献   

13.
Chromobindin A is a large, multisubunit protein that binds to chromaffin granule membranes in a Ca2+- and ATP-regulated manner. Ca2+ stimulates binding to the membrane, whereas ATP, in the the absence of Ca2+, is required for release of the protein from the membrane. We now report that spectral and HPLC data indicate that nucleotides are associated with the native chromobindin A complex and that the protein can bind two molecules of [3H]ATP in vitro. Chromobindin A also appears to be a novel nucleotide triphosphatase. ATPase activity was detected in fractions containing chromobindin A isolated by affinity chromatography, gel filtration, or ion exchange chromatography. Kinetic studies indicated that the Vmax is 44 nmol of Pi/mg/min and the Km is 0.115 mM, whereas the nonhydrolyzable ATP analog 5'-adenylylimidodiphosphate acts as a competitive inhibitor of this reaction with a Ki of 0.08 mM. The activity was found to be sensitive to protease treatment or to preincubation at 65 degrees C and was inhibited by Ca2+ or low pH. The ATPase activity was not inhibited by N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide, vanadate, oligomycin, or azide.  相似文献   

14.
Factor IX is an indispensable protein required in the blood coagulation cascade. It binds to the surface of phospholipid membrane by means of a gamma-carboxyglutamic acid (Gla) domain situated at the N terminus. Recently, we showed that physiological concentrations of Mg2+ ions affect the native conformation of the Gla domain and in doing so augment the biological activity of factor IXa and binding affinity with its binding protein even in the presence of Ca2+ ions. Here we report on the crystal structures of the Mg2+/Ca2+-bound and Ca2+-bound (Mg2+-free) factor IX Gla domain (IXGD1-46) in complex with its binding protein (IX-bp) at 1.55 and 1.80 A resolutions, respectively. Three Mg2+ and five Ca2+ ions were bound in the Mg2+/Ca2+-bound IXGD1-46, and the Mg2+ ions were replaced by Ca2+ ions in Mg2+-free IXGD1-46. Comparison of Mg2+/Ca2+-bound with Ca2+-bound structures of the complexes showed that Mg2+ ion, which formed a bridge between IXGD1-46 and IX-bp, forced IXGD1-46 to rotate 4 degrees relative to IX-bp and hence might be the cause of a more tight interaction between the molecules than in the case of the Mg2+-free structure. The results clearly suggest that Mg2+ ions are required to maintain native conformation and in vivo function of factor IX Gla domain during blood coagulation.  相似文献   

15.
A mutant (M48Y) of chicken skeletal muscle troponin C was prepared in which Tyr replaced Met-48 of the recombinant protein (rTnC). Since Tyr and Trp are normally absent, spectral properties could be unambiguously assigned to the site of substitution. In the crystal structure, this residue lies at the COOH-terminal end of the B-helix of the N domain in a region postulated to undergo a significant conformational change to a more polar environment upon Ca2+ binding [Herzberg et al. (1986) J. Biol. Chem. 261, 2638-2644]. Comparison of the far-UV CD spectra of M48Y and rTnC in the absence and presence of Ca2+ indicated no overall structural alteration due to the mutation. However, Ca2+ titration of the ellipticity change showed a reduction in Ca2+ affinity and cooperativity of sites I and II. A Ca(2+)-induced increase in the near-UV ellipticity of M48Y at pH 7.12 and a red shift in its UV absorbance spectrum occurred over a range of free [Ca2+] attributable to the N-domain transition only. This was largely abolished at pH 5.3 where Ca2+ no longer binds to sites I and II. That region of the 1H NMR spectrum attributable to Tyr was broadened upon Ca2+ binding. These Ca(2+)-induced changes are consistent with the environment of the Tyr side chain becoming chiral, less polar, and more immobile, all in a direction opposite to that predicted. These observations indicate that while the general features of the postulated model are valid, it is unlikely to be correct in detail.  相似文献   

16.
Factor VIIa (fVIIa) is composed of four discrete domains, a gamma-carboxyglutamic acid (Gla)-containing domain, two epidermal growth factor (EGF)-like domains, and a serine protease domain, all of which appear to be involved, to different extents, in an optimal interaction with tissue factor (TF). All except the second EGF-like domain contain at least one Ca2+ binding site and many properties of fVIIa, e.g., TF and phospholipid binding and amidolytic activity, are Ca(2+)-dependent. A CD study was performed to characterize and locate the conformational changes in fVIIa induced by Ca2+ and TF binding. In addition to intact fVIIa, derivatives lacking the Gla domain or the protease domain were used. Assignment of the Ca(2+)-induced changes in the far-UV region of the fVIIa spectrum to the Gla domain could be made by comparing the CD spectra obtained with these fVIIa derivatives. The changes primarily appeared to reflect a Ca(2+)-induced ordering of alpha-helices existing in the apo state of fVIIa. This was corroborated by models of the apo and Ca2+ forms of fVIIa, obtained as difference spectra between fVIIa derivatives, were very similar to those of isolated Gla peptides from other vitamin K-dependent plasma proteins. The near-UV CD spectrum of fVIIa was dominated by aromatic residues residing in the protease domain and specific bands affected by Ca2+ were indicative of tertiary structural alterations. The formation of a fVIIa:TF complex led to secondary structural changes that appeared to be restricted to the catalytic domain, possibly shedding light on the mechanism by which TF induces an enhancement of fVIIa catalytic activity.  相似文献   

17.
Maniccia AW  Yang W  Li SY  Johnson JA  Yang JJ 《Biochemistry》2006,45(18):5848-5856
Ca2+ controls biological processes by interacting with proteins with different affinities, which are largely influenced by the electrostatic interaction from the local negatively charged ligand residues in the coordination sphere. We have developed a general strategy for rationally designing stable Ca2+- and Ln3+-binding proteins that retain the native folding of the host protein. Domain 1 of cluster differentiation 2 (CD2) is the host for the two designed proteins in this study. We investigate the effect of local charge on Ca2+-binding affinity based on the folding properties and metal-binding affinities of the two proteins that have similarly located Ca2+-binding sites with two shared ligand positions. While mutation and Ca2+ binding do not alter the native structure of the protein, Ca2+ binding specifically induced changes around the designed Ca2+-binding site. The designed protein with a -5 charge at the binding sphere displays a 14-, 20-, and 12-fold increase in the binding affinity for Ca2+, Tb3+, and La3+, respectively, compared to the designed protein with a -3 charge, which suggests that higher local charges are preferred for both Ca2+ and Ln3+ binding. The localized charged residues significantly decrease the thermal stability of the designed protein with a -5 charge, which has a T(m) of 41 degrees C. Wild-type CD2 has a T(m) of 61 degrees C, which is similar to the designed protein with a -3 charge. This decrease is partially restored by Ca2+ binding. The effect on the protein stability is modulated by the environment and the secondary structure locations of the charged mutations. Our study demonstrates the capability and power of protein design in unveiling key determinants to Ca2+-binding affinity without the complexities of the global conformational changes, cooperativity, and multibinding process found in most natural Ca2+-binding proteins.  相似文献   

18.
The thermodynamic stability and temperature induced structural changes of oxidized thioredoxin h from Chlamydomonas reinhardtii have been studied using differential scanning calorimetry (DSC), near- and far-UV circular dichroism (CD), and fluorescence spectroscopies. At neutral pH, the heat induced unfolding of thioredoxin h is irreversible. The irreversibly unfolded protein is unable to refold due to the formation of soluble high-order oligomers. In contrast, at acidic pH the heat induced unfolding of thioredoxin h is fully reversible and thus allows the thermodynamic stability of this protein to be characterized. Analysis of the heat induced unfolding at acidic pH using calorimetric and spectroscopic methods shows that the heat induced denaturation of thioredoxin h can be well approximated by a two-state transition. The unfolding of thioredoxin h is accompanied by a large heat capacity change [6.0 +/- 1.0 kJ/(mol.K)], suggesting that at low pH a cold denaturation should be observed at the above-freezing temperatures for this protein. All used methods (DSC, near-UV CD, far-UV CD, Trp fluorescence) do indeed show that thioredoxin h undergoes cold denaturation at pH <2.5. The cold denaturation of thioredoxin h cannot, however, be fitted to a two-state model of unfolding. Furthermore, according to the far-UV CD, thioredoxin h is fully unfolded at pH 2.0 and 0 degrees C, whereas the other three methods (near-UV CD, fluorescence, and DSC) indicate that under these conditions 20-30% of the protein molecules are still in the native state. Several alternative mechanisms explaining these results such as structural differences in the heat and cold denatured state ensembles and the two-domain structure of thioredoxin h are discussed.  相似文献   

19.
Horseradish peroxidase A1 can refold to a native-like structure without binding calcium, originating a Ca2+-depleted native state as previously demonstrated. Thermal unfolding studies of horseradish peroxidase anionic 1 (HRPA1) have shown that calcium ions present during refolding lead to the appearance of a misfolded conformational state, which cannot incorporate the heme group. This calcium-induced conformational state, ICa2+, is less stable than the native state and has distinct secondary and tertiary structures as probed by far-UV and visible circular dichroism and tryptophan fluorescence. The fraction of ICa2+ increases exponentially with increasing calcium concentration. The ICa2+ state is formed during refolding after calcium binding to the unfolded state, as reconstitution of HRPA1 from its apoprotein reveals that the affinity of the apoprotein to protoporphyrin IX is higher in the presence of calcium. If calcium is added after refolding only, the majority of HRPA1 molecules retain their native conformation, thus confirming the binding of calcium to the unfolded state.  相似文献   

20.
Bis-ANS binds to native glutaminyl-tRNA synthetase (GlnRS) with a fast and a slow phase. The rate constant of the slow phase is independent of bis-ANS concentration suggesting a slow conformational change in the pathway of bis-ANS binding. Aging of GlnRS causes a large decrease of the slow phase amplitude with concomitant increase of the fast phase amplitude. Several other large, multi-domain proteins show similar patterns upon aging. The near UV-CD spectra of the native and the aged GlnRS remain similar. Significant changes in far UV-CD, acrylamide quenching and sulfhydryl reactivity, are seen upon aging, suggesting disruptions in native interactions. Refolding of GlnRS from the urea-denatured state rapidly produces a state that is very similar to the equilibrium molten globule state. Bis-ANS binds to the molten globule state with kinetics similar to that of the aged state and unlike that of the native state. This suggests that the slow binding phase of bis-ANS, seen in native proteins, originate from relatively high energy barriers between the native and the more open states. Thus bis-ANS can be used as a powerful probe for large amplitude, low-frequency motions of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号