首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine myosin heavy chain (MHC) and myosin light chain (MLC) isoforms following 12 wk of progressive resistance training (PRT). A needle biopsy was taken from the vastus lateralis to determine fiber-type expression [ATPase (pH 4.54) and MHC/MLC] in seven healthy men (age = 74.0 +/- 1.8 yr). Subjects were also tested for 1-repetition maximum (1-RM), pre- and posttraining. The progressive knee extensor protocol consisted of three sets at 80% of 1-RM 3 days/wk for 12 wk. Freeze-dried, single muscle fibers were dissected for MHC and MLC analysis and then subjected to SDS-PAGE and silver staining, pre- and posttraining. MHC expression increased in the I (10.4%; P < 0.05) and decreased in I/IIa (9.0%; P < 0.05), I/IIa/x (0.9%; P < 0.05), and IIa/x (8.9%; P < 0.05) isoforms, with no change in the IIa and IIx isoforms, pre- vs. posttraining (total fibers = 3,059). The MLC(3f)-to-MLC(2) ratio did not change with the PRT in either the MHC I or MHC IIa isoforms (total fibers = 902), pre- to posttraining. ATPase fiber distribution did not significantly differ following training (I: 50. 4 +/- 6.7 vs. 51.9 +/- 7.9, IIa: 36.8 +/- 5.3 vs. 41.1 +/- 7.0, IIb: 12.8 +/- 5.6 vs. 7.0 +/- 4.0%; pre- vs. posttraining, respectively). 1-RM increased (51.9%; P < 0.05) from pre- to posttraining. The PRT provide a stimulus for alterations in MHC isoforms, which demonstrated a decrease in all hybrid isoforms and an increase in MHC I expression (not found in the ATPase results), unlike the MLC ratio (3:2), which was not altered with training.  相似文献   

2.
This study was aimed to achieve a definitive and unambiguous identification of fiber types in canine skeletal muscles and of myosin isoforms that are expressed therein. Correspondence of canine myosin isoforms with orthologs in other species as assessed by base sequence comparison was the basis for primer preparation and for expression analysis with RT-PCR. Expression was confirmed at protein level with histochemistry, immunohistochemistry, and SDS-PAGE combined together and showed that limb and trunk muscles of the dog express myosin heavy chain (MHC) type 1, 2A, and 2X isoforms and the so-called "type 2dog" fibers express the MHC-2X isoform. MHC-2A was found to be the most abundant isoform in the trunk and limb muscle. MHC-2X was expressed in most but not all muscles and more frequently in hybrid 2A-2X fibers than in pure 2X fibers. MHC-2B was restricted to specialized extraocular and laryngeal muscles, although 2B mRNA, but not 2B protein, was occasionally detected in the semimembranosus muscle. Isometric tension (P(o)) and maximum shortening velocity (V(o)) were measured in single fibers classified on the basis of their MHC isoform composition. Purified myosin isoforms were extracted from single muscle fibers and characterized by the speed (V(f)) of actin filament sliding on myosin in an in vitro motility assay. A close proportionality between V(o) and V(f) indicated that the diversity in V(o) was due to the different myosin isoform composition. V(o) increased progressively in the order 1/slow < 2A < 2X < 2B, thus confirming the identification of the myosin isoforms and providing their first functional characterization of canine muscle fibers.  相似文献   

3.
Early postnatal development of rat diaphragm muscle (Dia(m)) is marked by dramatic transitions in myosin heavy chain (MHC) isoform expression. We hypothesized that the transition from the neonatal isoform of MHC (MHC(Neo)) to adult fast MHC isoform expression in Dia(m) fibers is accompanied by an increase in both the maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) and the ATP consumption rate during maximum isometric activation (ATP(iso)). Rat Dia(m) fibers were evaluated at postnatal days 0, 14, and 28 and in adults (day 84). Across all ages, V(max) ATPase of fibers was significantly higher than ATP(iso). The reserve capacity for ATP consumption [1 - (ratio of ATP(iso) to V(max) ATP(ase))] was remarkably constant ( approximately 55-60%) across age groups, although at day 28 and in adults the reserve capacity for ATP consumption was slightly higher for fibers expressing MHC(Slow) compared with fast MHC isoforms. At day 28 and in adults, both V(max) ATPase and ATP(iso) were lower in fibers expressing MHC(Slow) followed in rank order by fibers expressing MHC(2A), MHC(2X), and MHC(2B). For fibers expressing MHC(Neo), V(max) ATPase, and ATP(iso) were comparable to values for adult fibers expressing MHC(Slow) but significantly lower than values for fibers expressing fast MHC isoforms. We conclude that postnatal transitions from MHC(Neo) to adult fast MHC isoform expression in Dia(m) fibers are associated with corresponding but disproportionate changes in V(max) ATPase and ATP(iso).  相似文献   

4.
Biopsy samples were taken from the vastus lateralis of 18- to 84-yr-old male sprinters (n = 91). Fiber-type distribution, cross-sectional area, and myosin heavy chain (MHC) isoform content were identified using ATPase histochemistry and SDS-PAGE. Specific tension and maximum shortening velocity (V(o)) were determined in 144 single skinned fibers from younger (18-33 yr, n = 8) and older (53-77 yr, n = 9) runners. Force-time characteristics of the knee extensors were determined by using isometric contraction. The cross-sectional area of type I fibers was unchanged with age, whereas that of type II fibers was reduced (P < 0.001). With age there was an increased MHC I (P < 0.01) and reduced MHC IIx isoform content (P < 0.05) but no differences in MHC IIa. Specific tension of type I and IIa MHC fibers did not differ between younger and older subjects. V(o) of fibers expressing type I MHC was lower (P < 0.05) in older than in younger subjects, but there was no difference in V(o) of type IIa MHC fibers. An aging-related decline of maximal isometric force (P < 0.001) and normalized rate of force development (P < 0.05) of knee extensors was observed. Normalized rate of force development was positively associated with MHC II (P < 0.05). The sprint-trained athletes experienced the typical aging-related reduction in the size of fast fibers, a shift toward a slower MHC isoform profile, and a lower V(o) of type I MHC fibers, which played a role in the decline in explosive force production. However, the muscle characteristics were preserved at a high level in the oldest runners, underlining the favorable impact of sprint exercise on aging muscle.  相似文献   

5.
The aim of this study was to assess the relationships between human muscle fiber hypertrophy, protein isoform content, and maximal Ca(2+)-activated contractile function following a short-term period of resistance exercise training. Six male subjects (age 27 +/- 2 yr) participated in a 12-wk progressive resistance exercise training program that increased voluntary lower limb extension strength by >60%. Single chemically skinned fibers were prepared from pre- and posttraining vastus lateralis muscle biopsies. Training increased the cross-sectional area (CSA) and peak Ca(2+)-activated force (P(o)) of fibers containing type I, IIa, or IIa/IIx myosin heavy chain by 30-40% without affecting fiber-specific force (P(o)/CSA) or unloaded shortening velocity (V(o)). Absolute fiber peak power rose as a result of the increase in P(o), whereas power normalized to fiber volume was unchanged. At the level of the cross bridge, the effects of short-term resistance training were quantitative (fiber hypertrophy and proportional increases in fiber P(o) and absolute power) rather than qualitative (no change in P(o)/CSA, V(o), or power/fiber volume).  相似文献   

6.
Aging is characterized by a progressive loss of muscle mass and impaired contractility (e.g., decline in force, velocity, and power). Although the slowing of contraction speed in aging muscle is well described, the underlying molecular mechanisms responsible for the decrement in speed are unknown. Myosin heavy chain (MHC) isoforms are the primary molecules determining contractile velocity; however, the contraction speed of single fibers within a given MHC isoform type is variable. Recent evidence proposes that the decline in shortening velocity (Vo) with aging is associated with a decrease in the relative content of essential myosin light chain 3f (MLC(3f) ) isoform. In the current study, we first evaluated the relative content of MLC(3f) isoform and Vo in adult and old rats. We then used recombinant adenovirus (rAd) gene transfer technology to increase MLC(3f) protein content in the MHC type II semimembranosus muscle (SM). We hypothesized that (i) aging would decrease the relative MLC(3f) content and Vo in type II fibers, and (ii) increasing the MLC(3f) content would restore the age-induced decline in Vo. We found that there was an age-related decrement in relative MLC(3f) content and Vo in MHC type II fibers. Increasing MLC(3f) content, as indicated by greater % MLC(3f) and MLC(3f) /MLC(2f) ratio, provided significant protection against age-induced decline in Vo without influencing fiber diameter, force generation, MHC isoform distribution, or causing cellular damage. To the best of our knowledge, these are the first data to demonstrate positive effects of MLC(3f) against slowing of contractile function in aged skeletal muscle.  相似文献   

7.
Maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) and ATP consumption rate during maximum isometric activation (ATP(iso)) were determined in human vastus lateralis (VL) muscle fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that the reserve capacity for ATP consumption [1 -- (ratio of ATP(iso) to V(max) ATPase)] varies across VL muscle fibers expressing different MHC isoforms. Biopsies were obtained from 12 subjects (10 men and 2 women; age 21--66 yr). A quantitative histochemical procedure was used to measure V(max) ATPase. In permeabilized fibers, ATP(iso) was measured using an NADH-linked fluorometric procedure. The reserve capacity for ATP consumption was lower for fibers coexpressing MHC(2X) and MHC(2A) compared with fibers singularly expressing MHC(2A) and MHC(slow) (39 vs. 52 and 56%, respectively). Tension cost (ratio of ATP(iso) to generated force) also varied with fiber type, being highest in fibers coexpressing MHC(2X) and MHC(2A). We conclude that fiber-type differences in the reserve capacity for ATP consumption and tension cost reflect functional differences such as susceptibility to fatigue.  相似文献   

8.
Colloidal gold-conjugated monoclonal antibodies were prepared to stage-specific fast myosin heavy chain (MHC) isoforms of developing chicken pectoralis major (PM). Native thick filaments from different stages of development were reacted with these antibodies and examined in the electron microscope to determine their myosin isoform composition. Filaments prepared from 12-d embryo, 10-d chick, and 1-yr chicken muscle specifically reacted with the embryonic (EB165), neonatal (2E9), and adult (AB8) antimyosin gold-conjugated monoclonal antibodies, respectively. The myosin isoform composition was more complex in thick filaments from stages of pectoral muscle where more than one isoform was simultaneously expressed. In 19-d embryo muscle where both embryonic and neonatal isoforms were present, three classes of filaments were found. One class of filaments reacted only with the embryonic antibody, a second class reacted only with the neonatal-specific antibody, and a third class of filaments were decorated by both antibodies. Similar results were obtained with filaments prepared from 44-d chicken PM where the neonatal and adult fast MHCs were expressed. These observations demonstrate that two myosin isoforms can exist in an individual thick filament in vivo. Immunoelectron microscopy was also used to determine the specific distribution of different fast MHC isoforms within individual filaments from different stages of development. The anti-embryonic and anti-adult antibodies uniformly decorated both homogeneous and heterogeneous thick filaments. The neonatal specific antibody uniformly decorated homogeneous filaments; however, it preferentially decorated the center of heterogeneous filaments. These observations suggest that neonatal MHC may play a specific role in fibrillogenesis.  相似文献   

9.
Isoproteins of myosin alkali light chain (LC) were co-expressed in cultured chicken cardiomyocytes and fibroblasts and their incorporation levels into myofibrils and stress fibers were compared among members of the LC isoform family. In order to distinguish each isoform from the other, cDNAs of LC isoforms were tagged with different epitopes. Expressed LCs were detected with antibodies to the tags and their distribution was analyzed by confocal microscopy. In cardiomyocytes, the incorporation level of LC into myofibrils was shown to increase in the order from nonmuscle isoform (LC3nm), to slow skeletal muscle isoform (LC1sa), to slow skeletal/ventricular muscle isoform (LC1sb), and to fast skeletal muscle isoforms (LC1f and LC3f). Thus, the hierarchal order of the LC affinity for the cardiac myosin heavy chain (MHC) is identical to that obtained in the rat (Komiyama et al., 1996. J. Cell Sci., 109: 2089-2099), suggesting that this order may be common for taxonomic animal classes. In fibroblasts, the affinity of LC for the nonmuscle MHC in stress fibers was found to increase in the order from LC3nm, to LC1sb, to LC1sa, and to LC1f and LC3f. This order for the nonmuscle MHC is partly different from that for the cardiac MHC. This indicates that the order of the affinity of LC isoproteins for MHC varies depending on the MHC isoform. Further, for both the cardiac and nonmuscle MHCs, the fast skeletal muscle LCs exhibited the highest affinity. This suggests that the fast skeletal muscle LCs may be evolved isoforms possessing the ability to associate tightly with a variety of MHC isoforms.  相似文献   

10.
11.
Talmadge, Robert J., Roland R. Roy, and V. Reggie Edgerton.Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers. J. Appl.Physiol. 81(6): 2540-2546, 1996.The effects of14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044)on myosin heavy chain (MHC) isoform content of the rat soleus muscleand single muscle fibers were determined. On the basis ofelectrophoretic analyses, there was a de novo synthesis of type IIx MHCbut no change in either type I or IIa MHC isoform proportions aftereither SF or HS compared with controls. The percentage of fiberscontaining only type I MHC decreased by 26 and 23%, and the percentageof fibers with multiple MHCs increased from 6% in controls to 32% inHS and 34% in SF rats. Type IIx MHC was always found in combinationwith another MHC or combination of MHCs; i.e., no fibers contained typeIIx MHC exclusively. These data suggest that the expression of thenormal complement of MHC isoforms in the adult rat soleus muscle isdependent, in part, on normal weight bearing and that the absence ofweight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.

  相似文献   

12.
The present study examined Ca(2+) sensitivity of diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that Dia(m) fibers expressing the MHC(slow) isoform have greater Ca(2+) sensitivity than fibers expressing fast MHC isoforms and that this fiber-type difference in Ca(2+) sensitivity reflects the isoform composition of the troponin (Tn) complex (TnC, TnT, and TnI). Studies were performed in single Triton-X-permeabilized Dia(m) fibers. The Ca(2+) concentration at which 50% maximal force was generated (pCa(50)) was determined for each fiber. SDS-PAGE and Western analyses were used to determine the MHC and Tn isoform composition of single fibers. The pCa(50) for Dia(m) fibers expressing MHC(slow) was significantly greater than that of fibers expressing fast MHC isoforms, and this greater Ca(2+) sensitivity was associated with expression of slow isoforms of the Tn complex. However, some Dia(m) fibers expressing MHC(slow) contained the fast TnC isoform. These results suggest that the combination of TnT, TnI, and TnC isoforms may determine Ca(2+) sensitivity in Dia(m) fibers.  相似文献   

13.
Digastric muscle (DGM) is a powerful jaw-opening muscle that participates in chewing, swallowing, breathing, and speech. For better understanding of its contractile properties, five pairs of adult human DGMs were obtained from autopsies and processed with immunocytochemistry and/or immunoblotting. Monoclonal antibodies against alpha-cardiac, slow tonic, neonatal, and embryonic myosin heavy chain (MHC) isoforms were employed to determine whether the DGM fibers contain these MHC isoforms, which have previously been demonstrated in restricted specialized craniocervical skeletal muscles but have not been reported in normal adult human trunk and limb muscles. The results showed expression of all these MHC isoforms in adult human DGMs. About half of the fibers reacted positively to the antibody specific for the alpha-cardiac MHC isoform in DGMs, and the number of these fibers decreased with age. Slow tonic MHC isoform containing fibers accounted for 19% of the total fiber population. Both the alpha-cardiac and slow tonic MHC isoforms were found to coexist mainly with the slow twitch MHC isoform in a fiber. A few DGM fibers expressed the embryonic or neonatal MHC isoform. The findings suggest that human DGM fibers may be specialized to facilitate performance of complex motor behaviors in the upper airway and digestive tract.  相似文献   

14.
15.
J Kucera  J M Walro 《Histochemistry》1990,93(6):567-580
The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

16.
With the use of myosin adenosinetriphosphatase (ATPase) and immunofluorescence staining methods, the adaptive responses of intrafusal and extrafusal fibers to endurance swimming were studied in frozen sections of rat soleus (SOL) and extensor digitorum longus (EDL) muscles. Glycogen depletion confirmed muscle fatigue at the end of a standardized bout of exercise. No significant age-dependent changes in myosin isoforms were detected in any fibers. The 12-wk training increased type I fibers by 10.9% in the SOL and type IIa fibers in the EDL by 16.6%. In trained muscle sections, both staining methods identified a permuted chain fiber, expressed the same as the myosin isoform in the bag2 fiber. However, no exercise-induced change of myosin isoform profile was found in the bag1 and bag2 fibers. Myosin ATPase (and immunofluorescence) staining showed the percentage of permuted chain fibers increased from 0 to 6.7% (5.6%) after 6 wk of training and to 19.2% (14.1%) after 12 wk of training and that it was still at 6.1% (4.2%) 10 wks after training. A novel myosin isoform may thus be expressed in nuclear chain fibers by repetitive recruitment of muscle spindles.  相似文献   

17.
18.
Summary The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

19.
Vertebrate smooth muscle myosin heavy chains (MHCs) exist as two isoforms with molecular masses of 204 and 200 kDa (MHC204 and MHC200) that are generated from a single gene by alternative splicing of mRNA (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). A dimer of two MHCs associated with two pairs of myosin light chains forms a functional myosin molecule. To investigate the isoform composition of the MHCs in native myosin, antibodies specific for MHC204 were generated and used to immunoprecipitate purified bovine aortic smooth muscle myosin from a solution containing equal amounts of each isoform. MHC204 quantitatively removed from this mixture was completely free of MHC200. Immunoprecipitation of the supernatant with an antiserum that recognizes both isoforms equally well revealed that only MHC200 remained. We conclude that only homodimers of MHC204 and MHC200 exist under these conditions. A method is described for the purification of enzymatically active MHC204 and myosin on a protein G-agarose high performance liquid chromatography column containing immobilized MHC204 antibodies. We show, using an in vitro motility assay, that the movement of actin filaments by myosin containing 204-kDa heavy chains (0.435 +/- 0.115 microns/s) was not significantly different from that of myosin containing 200-kDa heavy chains (0.361 +/- 0.078 microns/s) or from myosin containing equal amounts of each heavy chain isoform (0.347 +/- 0.082 microns/s).  相似文献   

20.
Emergence of the mature myosin phenotype in the rat diaphragm muscle   总被引:4,自引:0,他引:4  
Immunohistochemical analysis of myosin heavy chain (MHC) isoform expression in perinatal and adult rat diaphragm muscles was performed with antibodies which permitted the identification of all known MHC isoforms found in typical rat muscles. Isoform switching, leading to the emergence of the adult phenotype, was more complex than had been previously described. As many as four isoforms could be coexpressed in a single myofiber. Elimination of developmental isoforms did not usually result in the myofiber immediately achieving its adult phenotype. Activation of genes for specific adult isoforms might be delayed to puberty. For example, two of the three fast MHCs, MHC2X and MHC2A appeared perinatally, while MHC2B did not appear until 30 days postnatal. By Day 60 this isoform was present in approximately 27% of the myofibers, but in most myofibers expression of this isoform was transient (i.e., at Day greater than or equal to 115, less than 4% of the myofibers expressed MHC2B). Fibers which contained MHC beta/slow during the late fetal and early neonatal period coexpressed MHCemb. A marked increase in the frequency of fibers containing MHC beta/slow occurred between 4 and 21 days postnatal. These slow fibers arose from a population of myofibers which expressed MHCemb and MHCneo during their development, and they accounted for the majority of slow fibers found in the adult diaphragm. The adult myosin phenotype of the diaphragm myofibers (as determined with immunocytochemistry, and 5% SDS-PAGE) was not achieved until the rat was greater than or equal to 115 days old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号