首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in [Mg2+] in a millimolar range have a significant inverse effect on the Ca2+- (or Sr2+)activated tension generation of skeletal muscle fibers. Single frog (Rana pipiens) semitendinosus muscle fibers were "skinned" (sarcolemma removed) and contracted isometrically in bathing solutions of varying [Ca2+] or [Sr2+] and [Mg2+] but a constant pH, [MgATP2-], [K+], [CP2-], [CPK], and ionic strength. Ca2+- (or Sr2+- )activated steady-state tensions were recorded for three [Mg2+]'s: 5 X 10(-5)M, 1 X 10(-3) M, and 2 X 10(-3) M; and these tensions were expressed as the percentages of maximum tension generation of the fibers for the same [Mg2+]. Maximum tension was not affected by [Mg2+] within Ca2+-activating or Sr2+-activating sets of solutions; however, the submaximum Ca2+-(or Sr2+)activated tension is strongly affected in an inverse fashion by increasing [Mg2+]. Mg2+ behaves as a competitive inhibitor of Ca2+ and also affects the degree of cooperativity in the system. At [Mg2+] = 5 X 10(-5)M the shape of tension versus [Ca2+] (or [Sr2+]) curve showed evidence of cooperativity of Ca2+ (or Sr2+) binding or activation of the contractile system. As [Mg2+] increased, the apparent affinity for Ca2+ or Sr2+ and cooperativity of the contractile system declined. The effect on cooperativity suggests that as [Mg2+] decreases a threshold for Ca2+ activation appears.  相似文献   

2.
Chemically skinned fibers from guinea pig taenia caecum were prepared by saponin treatment to study the smooth muscle contractile system in a state as close to the living state as posible. The skinned fibers showed tension development with an increase of Ca2+ in the solution, the threshold tension occurring as 5 X 10(-7) M Ca2+. The maximal tension induced with 10(-4) M Ca2+ was as large and rapid as the potassium-induced contracture in the intact fibers. The slope of the pCa tension curve was less steep than that of skeletal muscle fibers and shifted in the direction of lower pCa with an increase of MgATP. The presence of greater than 1 mM Mg2+ was required for Ca2+-induced contraction in the skinned fibers as well as for the activation of ATPase and superprecipitation in smooth muscle myosin B. Mg2+ above 2 mM caused a slow tension development by itself in the absence of Ca2+. Such a Mg2+-induced tension showed a linear relation to concentrations up to 8 mM in the presence of MgATP. Increase of MgATP concentration revealed a monophasic response without inhibition of Ca2+-induced tension development, unlike the biphasic response in striated muscle. When MgATP was removed from the relaxing solution, the tension developed slowly and slightly, even though the Mg2+ concentrations was fixed at 2 mM. These results suggest a substantial difference in the mode of actin-myosin interaction between smooth and skeletal muscle.  相似文献   

3.
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle.  相似文献   

4.
Intact cardiac cells from the adult rat or rabbit ventricle were isolated by enzymatic digestion with a progressive increase of the [free Ca2+] in the solution. These cells were electrically stimulated in the presence of 2.50 mM free Ca2+, and a twitch of maximum amplitude was elicited by the positive inotropic interventions that were found to be optimum. Then the cells were chemically skinned, and the maximum tension induced by a saturating [free Ca2+] was used as a reference to express the tension developed during the twitch of the intact cells. The myoplasmic [free Ca2+] reached during the twitch was inferred from the tension-pCa curve. In mechanically skinned cells of the same animal species, the myoplasmic [free Ca2+] reached during Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum (SR) was inferred by two methods using (a) the tension-pCa curve and (b) a direct calibration of the transients of aequorin bioluminescence. The induction of a maximum Ca2+ release from the SR required a larger Ca2+ preload of the SR and a higher [free Ca2+] trigger in the rabbit than in the rat skinned cells. However, the results obtained with the two methods of inference of the myoplasmic [free Ca2+] suggest that in both animal species a maximum myoplasmic [free Ca2+] of pCa approximately 5.40 was reached during both the optimum Ca2+-induced release of Ca2+ from the SR of the skinned cells and the optimum twitch of the intact cells. This was much lower than the [free Ca2+] necessary for the full activation of the myofilaments (pCa approximately 4.90).  相似文献   

5.
Conflicting reports have appeared concerning the effect of [Mg2+] on muscle activity. Several groups have found that increasing [Mg2+] produces a right-ward shift of the pCa-tension curve, while others have found no effect of [Mg2+] on myofibrillar ATPase activity. The present study is a careful evaluation of the effect of [Mg2+] on myofibrillar ATPase, skinned fiber tension development, TnCDANZ (troponin C (TnC)-labeled with 5-dimethylaminonaphthalene-1-sulfonyl aziridine) fluorescence, and simultaneous TnCDANZ fluorescence and tension development in the same fiber. A small effect of [Mg2+] on both ATPase and tension development was found with an apparent association constant of about 2 X 10(2) M-1. The Ca2+ dependence of TnCDANZ fluorescence was similarly effected by [Mg2+], either alone or when incorporated into TnC-depleted skinned fibers (K'Mg approximately equal to 2-3 X 10(2) M-1), suggesting that the effect of [Mg2+] on activity is due to an effect of [Mg2+] on Ca2+ binding to the Ca2+-specific sites of TnC. It is not yet clear whether this effect of [Mg2+] is through direct competition at the binding sites or through indirect effects. In either case, the calculated effect of physiological [Mg2+] is so small that the regulatory sites of TnC can still be considered "Ca2+-specific." In addition, a slightly greater effect of [Mg2+] on tension development (K'Mg = 4.62 X 10(2) M-1) was observed only for very low levels of [Mg2+], which might suggest an additional effect of Mg2+ on tension development which is saturated by millimolar Mg2+.  相似文献   

6.
Partial extraction of troponin C (TnC) decreases the Ca2+ sensitivity of tension development in mammalian skinned muscle fibers (Moss, R. L., G. G. Giulian, and M. L. Greaser. 1985. Journal of General Physiology. 86:585), which suggests that Ca2+-activated tension development involves molecular cooperativity within the thin filament. This idea has been investigated further in the present study, in which Ca2+-insensitive activation of skinned fibers from rabbit psoas muscles was achieved by removing a small proportion of total troponin (Tn) complexes. Ca2+-activated isometric tension was measured at pCa values (i.e., -log[Ca2+]) between 6.7 and 4.5: (a) in control fiber segments, (b) in the same fibers after partial removal of Tn, and (c) after recombination of Tn. Tn removal was accomplished using contaminant protease activity found in preparations of LC2 from rabbit soleus muscle, and was quantitated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning densitometry. Partial Tn removal resulted in the development of a Ca2+-insensitive active tension, which varied in amount depending on the duration of the extraction, and concomitant decreases in maximal Ca2+-activated tensions. In addition, the tension-pCa relation was shifted to higher pCa values by as much as 0.3 pCa unit after Tn extraction. Readdition of Tn to the fiber segments resulted in the reduction of tension in the relaxing solution to control values and in the return of the tension-pCa relation to its original position. Thus, continuous Ca2+-insensitive activation of randomly spaced functional groups increased the Ca2+ sensitivity of tension development in the remaining functional groups along the thin filament. In addition, the variation in Ca2+-insensitive active tension as a function of Tn content after extraction suggests that only one-third to one-half of the functional groups within a thin filament need to be activated for complete disinhibition of that filament to be achieved.  相似文献   

7.
The block of rabbit skeletal ryanodine receptors (RyR1) and dog heart RyR2 by cytosolic [Mg2+], and its reversal by agonists Ca2+, ATP and caffeine was studied in planar bilayers. Mg2+ effects were tested at submaximal activating [Ca2+] (5 microM). Approximately one third of the RyR1s had low open probability ("LA channels") in the absence of Mg2+. All other RyR1s displayed higher activity ("HA channels"). Cytosolic Mg2+ (1 mM) blocked individual RyR1 channels to varying degrees (32 to 100%). LA channels had residual P(o) <0.005 in 1 mM Mg2+ and reactivated poorly with [Ca2+] (100 microM), caffeine (5 mM), or ATP (4 mM; all at constant 1 mM Mg2+). HA channels had variable activity in Mg2+ and variable degree of recovery from Mg2+ block with Ca2+, caffeine or ATP application. Nearly all cardiac RyR2s displayed high activity in 5 microM [Ca2+]. They also had variable sensitivity to Mg2+. However, the RyR2s consistently recovered from Mg2+ block with 100 microM [Ca2+] or caffeine application, but not when ATP was added. Thus, at physiological [Mg2+], RyR2s behaved as relatively homogeneous Ca2+/caffeine-gated HA channels. In contrast, RyR1s displayed functional heterogeneity that arises from differential modulatory actions of Ca2+ and ATP. These differences between RyR1 and RyR2 function may reflect their respective roles in muscle physiology and excitation-contraction coupling.  相似文献   

8.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

9.
Tonic rabbit femoral artery and phasic rabbit ileum smooth muscles permeabilized with Triton X-100 were activated either by increasing [Ca2+] from pCa > 8.0 to pCa 6.0 (calcium-ascending protocol) or contracted at pCa 6.0 before lowering [Ca2+] (calcium-descending protocol). The effects of, respectively, high [MgATP]/low [MgADP] [10 mM MgATP + creatine phosphate (CP) + creatine kinase (CK)] or low [MgATP]/[MgADP] (2 mM MgATP, 0 CP, 0 CK) on the "force-[Ca]" relationships were determined. In femoral artery at low, but not at high, [MgATP]/[MgADP] the force and the ratio of stiffness/force at pCa 7.2 were significantly higher under the calcium-descending than calcium-ascending protocols (54% vs. 3% of Po, the force at pCa 6.0) (force hysteresis); the levels of regulatory myosin light chain (MLC20) phosphorylation (9 +/- 2% vs. 10 +/- 2%) and the velocities of unloaded shortening V0 (0.02 +/- 0.004 l/s with both protocols) were not significantly different. No significant force hysteresis was detected in rabbit ileum under either of these experimental conditions. [MgADP], measured in extracts of permeabilized femoral artery strips by two methods, was 130-140 microM during maintained force under the calcium-descending protocol. Exogenous CP (10 mM) applied during the descending protocol reduced endogenous [MgADP] to 46 +/- 10 microM and abolished force hysteresis: residual force at low [Ca2+] was 17 +/- 5% of maximal force. We conclude that the proportion of force-generating nonphosphorylated (AMdp) relative to phosphorylated cross-bridges is higher on the Ca2+-descending than on the Ca2+-ascending force curve in tonic smooth muscle, that this population of positively strained dephosphorylated cross-bridges has a high affinity for MgADP, and that the dephosphorylated AMdp . MgADP state makes a significant contribution to force maintenance at low levels of MLC20 phosphorylation.  相似文献   

10.
Ca2+ dependence of stimulated 45Ca efflux in skinned muscle fibers   总被引:7,自引:4,他引:3       下载免费PDF全文
Stimulation of sarcoplasmic reticulum Ca release by Mg reduction of caffeine was studied in situ, to characterize further the Ca2+ dependence observed previously with stimulation by Cl ion. 45Ca efflux and isometric force were measured simultaneously at 19 degrees C in frog skeletal muscle fibers skinned by microdissection; EGTA was added to chelate myofilament space Ca either before or after the stimulus. Both Mg2+ reduction (20 or 110 microM to 4 microM) and caffeine (5 mM) induced large force responses and 45Ca release, which were inhibited by pretreatment with 5 mM EGTA. In the case of Mg reduction, residual efflux stimulation was undetectable, and 45Ca efflux in EGTA at 4 microM Mg2+ was not significantly increased. Residual caffeine stimulation at 20 microM Mg2+ was substantial and was reduced further in increased EGTA (10 mM); at 600 microM Mg2+, residual stimulation in 5 mM EGTA was undetectable. Caffeine appears to initiate a small Ca2+-insensitive efflux that produces a large Ca2+-dependent efflux. Additional experiments suggested that caffeine also inhibited influx. The results suggest that stimulated efflux is mediated mainly or entirely by a channel controlled by an intrinsic Ca2+ receptor, which responds to local [Ca2+] in or near the channel. Receptor affinity for Ca2+ probably is influenced by Mg2+, but inhibition is weak unless local [Ca2+] is very low.  相似文献   

11.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
C-protein, a substantial component of muscle thick filaments, has been postulated to have various functions, based mainly on results from biochemical studies. In the present study, effects on Ca(2+)-activated tension due to partial removal of C-protein were investigated in skinned single myocytes from rat ventricle and rabbit psoas muscle. Isometric tension was measured at pCa values of 7.0 to 4.5: (a) in untreated myocytes, (b) in the same myocytes after partial extraction of C-protein, and (c) in some myocytes, after readdition of C-protein. The solution for extracting C-protein contained 10 mM EDTA, 31 mM Na2HPO2, 124 mM NaH2PO4, pH 5.9 (Offer et al., 1973; Hartzell and Glass, 1984). In addition, the extracting solution contained 0.2 mg/ml troponin and, for skeletal muscle, 0.2 mg/ml myosin light chain-2 in order to minimize loss of these proteins during the extraction procedure. Between 60 and 70% of endogenous C-protein was extracted from cardiac myocytes by a 1-h soak in extracting solution at 20-23 degrees C; a similar amount was extracted from psoas fibers during a 3-h soak at 25 degrees C. For both cardiac myocytes and skeletal muscle fibers, partial extraction of C-protein resulted in increased active tension at submaximal concentrations of Ca2+, but had little effect upon maximum tension. C-protein extraction also reduced the slope of the tension-pCa relationships, suggesting that the cooperativity of Ca2+ activation of tension was decreased. Readdition of C-protein to previously extracted myocytes resulted in recovery of both tension and slope to near their control values. The effects on tension did not appear to be due to disruption of cooperative activation of the thin filament, since C-protein extraction from cardiac myocytes that were 40-60% troponin-C (TnC) deficient produced effects similar to those observed in cells that were TnC replete. Measurements of the tension-pCa relationship in skeletal muscle fibers were also made at a sarcomere length of 3.5 microns which, because of the distribution of C-protein on the thick filament, should eliminate any interaction between C-protein and actin. The effects of C-protein extraction were similar at long and short sarcomere lengths. These data are consistent with a model in which C-protein modulates the range of movement of myosin, such that the probability of myosin binding to actin is increased after its extraction.  相似文献   

13.
Submaximum and maximum forces of the cardiac muscle contractile apparatus, activated by Ca2+ or Sr2+, were determined as a function of Mg2+ concentration. Apical left ventricular tissue from Sprague-Dawley rats was broken by homogenization into small bundles of fibers with disrupted sarcolemmas (skinned). Tension generation was activated by and graded according to the concentration of Ca2+ or Sr2+ in solutions bathing the skinned fibers and measured with a photodiode force transducer. Steady-state tensions for various levels of activation at each of four concentrations of Mg2+ (5 x 10(-5), 1 x 10(-3), 5 x 10(-3), and 10 x 10(-3) M) in the bathing solutions were analyzed. Other bathing solution constituents and parameters mimicked significant normal intracellular conditions while providing adequate buffering of [H+], [Ca2+], and [MgATP2-] (magnesium adenosine triphosphate). To assess changes in sensitivity of the mechanical system to activation by Ca2+ (or Sr2+), each submaximum tension was expressed as a percentage of the given fiber bundle's maximum force generated at saturating [Ca2+] (or [Sr2+]) at the same [Mg2+]. When plotted as saturation curves these data demonstrate that increasing [Mg2+] depresses Ca2+ sensitivity of the force-generating mechanism. The Ca2+ and Sr2+ sensitivity of the cardiac force-generating apparatus is similar at every [Mg2+], indicating that the magnitude of Mg2+ effect is similar for both types of activation. However, absolute maximum tensions at saturating activating cation concentration increased as [Mg2+] increased; the effect of Mg2+ on maximum force was proportionately the same for Ca2+ and Sr2+ activation. But because saturating [Ca2+] always resulted in a lower maximum force than saturating [Sr2+], this site of Ca2+-Mg2+ interaction appears distinct from the one influencing Ca2+ sensitivity.  相似文献   

14.
The factors regulating Ca2+ transport by isolated sarcoplasmic reticulum (SR) vesicles have been studied using the fluorescent indicator Fluo-3 to monitor extravesicular free [Ca2+]. ATP, in the presence of 5 mM oxalate, which clamps intravesicular [Ca2+] at approximately 10 microM, induced a rapid decline in Fluo-3 fluorescence to reach a limiting steady state level. This corresponds to a residual medium [Ca2+] of 100 to 200 nM, and has been defined as [Ca2+]lim, whilst thermodynamic considerations predict a level of less than 1 nM. This value is similar to that measured in intact muscle with Ca2+ fluophores, where it is presumed that sarcoplasmic free [Ca2+] is a balance between pump and leaks. Fluorescence of Fluo-3 at [Ca2+]lim was decreased 70% to 80% by histidine, imidazole and cysteine. The K0.5 value for histidine was 3 mM, suggesting that residual [Ca2+]lim fluorescence is due to Zn2+. The level of Zn2+ in preparations of SR vesicles, measured by atomic absorption, was 0.47+/-0.04 nmol/mg, corresponding to 0.1 mol per mol Ca-ATPase. This is in agreement with findings of Papp et al. (Arch. Biochem. Biophys., 243 (1985) 254-263). Histidine, 20 mM, included in the buffer, gave a corrected value for [Ca2+]lim of 49+/-1.8 nM, which is still higher than predicted on thermodynamic grounds. A possible 'pump/leak' mechanism was tested by the effects of varying active Ca2+ transport 1 to 2 orders with temperature and pH. [Ca2+]lim remained relatively constant under these conditions. Alternate substrates acetyl phosphate and p-NPP gave similar [Ca2+]lim levels even though the latter substrate supported transport 500-fold slower than with ATP. In fact, [Ca2+]lim was lower with 10 mM p-NPP than with 5 mM ATP. The magnitude of passive efflux from Ca-oxalate loaded SR during the steady state of [Ca2+]lim was estimated by the unidirectional flux of 45Ca2+, and directly, following depletion of ATP, by measuring release of 40Ca2+, and was 0.02% of Vmax. Constant infusion of CaCl2 at [Ca2+]lim resulted in a new steady state, in which active transport into SR vesicles balances the infusion rate. Varying infusion rates allows determination of [Ca2+]-dependence of transport in the absence of chelating agents. Parameters of non-linear regression were Vmax=853 nmol/min per mg, K0.5(Ca)=279 nM, and nH(Ca)=1.89. Since conditions employed in this study are similar to those in the sarcoplasm of relaxed muscle, it is suggested that histidine, added to media in studies of intracellular Ca2+ transients, and in the relaxed state, will minimise contribution of Zn2+ to fluophore fluorescence, since it occurs at levels predicted in this study to cause significant overestimation of cytoplasmic free [Ca2+] in the relaxed state. Similar precautions may apply to non-muscle cells as well. This study also suggests that [Ca2+]lim in the resting state is a characteristic feature of Ca2+ pump function, rather than a balance between active transport and passive leakage pathways.  相似文献   

15.
Various functional roles for myosin light chain 2 (LC2) have been suggested on the basis of numerous and predominantly in vitro biochemical studies. Using skinned fibers from rabbit psoas muscle, the present study examines the influence of partial removal of LC2 on isometric tension, stiffness, and maximum velocity of shortening at various levels of activation by Ca2+. Isometric tension, stiffness, and velocity of shortening were measured at pCa values between 6.6 and 4.5 (a) in a control fiber segment, (b) in the same fiber segment after partial removal of LC2, and (c) after recombination with LC2. The extraction solution contained 20 mM EDTA, 20 or 50 mM KCl, and either imidazole or PO4(2-) as a pH buffer (pH 7.0). The amount of LC2 extracted varied with the temperature, duration of extraction, and whether or not troponin C (0.5 mg/ml) was added to the extraction solution. Extraction of 20-40% LC2 resulted in increased active tensions in the range of pCa's between 6.6 and 5.7, but had no effect upon maximum tension. The tension-pCa relationship was left-shifted to lower [Ca2+] by as much as 0.2 pCa units after LC2 extraction. At low concentrations of Ca2+, an increase in stiffness proportional to the increase in tension was observed. Readdition of LC2 to these fiber segments resulted in a return of tension and stiffness to near control values. Stiffness during maximal activation was unaffected by partial extraction of LC2. LC2 extraction was shown to uniformly decrease (by 25-30%), the velocity of shortening during the high velocity phase but it did not significantly affect the low velocity phase of shortening. This effect was reversed by readdition of purified LC2 to the fiber segments. On the basis of these findings we conclude that LC2 may modulate the number of cross-bridges formed during Ca2+ activation and also the rate of cross-bridge detachment during shortening. These results are consistent with the idea that LC2 may modulate contraction via an influence upon the conformation of the S1-S2 hinge region of myosin.  相似文献   

16.
The formation and maintenance of Ca2+-filling levels by sarcoplasmic reticulum vesicles from euthyroid (control) and hypothyroid skeletal muscle were investigated using the Ca2+-indicator quin-2, at [Ca2+] in the medium [( Cao2+]) of 0.05-0.3 microM. Rapid ATP-dependent Ca2+ uptake resulted in a steady-state Ca2+-filling level, Cai2+, within one minute. This Ca2+ gradient was maintained for at least three minutes, during which less than 20% of the ATP was consumed. Cai2+ was maximal (120 nmol/mg) for [Cao2+] greater than 0.3 microM and decreased to 40 nmol/mg at [Cao2+] of 0.05 microM. Preparations from both experimental groups showed qualitatively and quantitatively the same relationship between Cai2+ and [Cao2+] at steady state, despite a significantly lower Ca2+-pump content of hypothyroid sarcoplasmic reticulum, which resulted in a 25% lower maximal (Ca2+ + Mg2+)-ATPase activity. Maintenance of the steady state, at all levels of Cai2+, was associated with net ATP consumption by the Ca2+ pump and cycling of Ca2+, which processes were 30% slower in the hypothyroid group as compared to the control group. Determination of the passive efflux of Ca2+, as well as the fraction of leaky or unsealed sarcoplasmic reticulum fragments, excluded either of these possibilities as an explanation for the relatively high (Ca2+ + Mg2+)-ATPase rates at steady state. On the basis of these and previously reported results, it is concluded that the maintenance of a Ca2+ gradient by sarcoplasmic reticulum under physiological conditions with respect to external [Ca2+] and the concentrations of ATP, ADP and Pi, is associated with the cycling of Ca2+ coupled to net ATP hydrolysis. Using the obtained data it is calculated that the sarcoplasmic reticulum may account for 20% of the resting metabolic rate in skeletal muscle. Consequently, together with the previously reported lower sarcoplasmic reticulum content of skeletal muscle in hypothyroidism, we calculate that about one third of the decrease in basal metabolic rate in this thyroid state can be related to the alterations of the sarcoplasmic reticulum.  相似文献   

17.
Thin strips of guinea pig tenia cecum were loaded with the Mg2+ indicator furaptra, and the indicator fluorescence signals measured in Ca2+-free condition were converted to cytoplasmic-free Mg2+ concentration ([Mg2+]i). Lowering the extracellular Na+ concentration ([Na+]o) caused a reversible increase in [Mg2+]i, consistent with the inhibition of Na+ gradient-dependent extrusion of cellular Mg2+ (Na+-Mg2+ exchange). Curve-fitting analysis indicated that the relation between [Na+]o and the rate of rise in [Mg2+], had a Hill coefficient of approximately 3, a [Na+]o at the half-maximal rate of rise of approximately 30 mM, and a maximal rate of 0.16 +/- 0.01 microM/s (mean +/- SE, n = 6). Depolarization with 56 mM K+ shifted the curve slightly toward higher [Na+]o without significantly changing the maximal rate, suggesting that the Na+-Mg2+ exchange was inhibited by depolarization. The maximal rate would correspond to a flux of 0.15-0.4 pmol/cm2/s, if cytoplasmic Mg2+ buffering power (defined as the ratio of the changes in total Mg2+ and free Mg2+ concentrations) is assumed to be 2-5. Ouabain (1-5 microM) increased the intracellular Na+ concentration, as assessed with fluorescence of SBFI (sodium-binding benzofuran isophthalate, a Na+ indicator), and elevated [Mg2+]i. In ouabain-treated preparations, removal of extracellular Na+ rapidly increased [Mg2+]i, with an initial rate of rise roughly proportional to the degree of the Mg2+ load, and, probably, to the Na+ load caused by ouabain. The enhanced rate of rise in [Mg2+]i (up to approximately 1 microM/s) could be attributed to the Mg2+ influx as a result of the reversed Na+-Mg2+ exchange. Our results support the presence of a reversible and possibly electrogenic Na+-Mg2+ exchange in the smooth muscle cells of tenia cecum.  相似文献   

18.
Atrial and ventricular myocytes 200 to 300 microm long containing one to five myofibrils are isolated from frog hearts. After a cell is caught and held between two suction micropipettes the surface membrane is destroyed by briefly jetting relaxing solution containing 0.05% Triton X-100 on it from a third micropipette. Jetting buffered Ca2+ from other pipettes produces sustained contractions that relax completely on cessation. The pCa/force relationship is determined at 20 degrees C by perfusing a closely spaced sequence of pCa concentrations (pCa = -log[Ca2+]) past the skinned myocyte. At each step in the pCa series quick release of the myocyte length defines the tension baseline and quick restretch allows the kinetics of the return to steady tension to be observed. The pCa/force data fit to the Hill equation for atrial and ventricular myocytes yield, respectively, a pK (curve midpoint) of 5.86 +/- 0.03 (mean +/- SE.; n = 7) and 5.87 +/- 0.02 (n = 18) and an nH (slope) of 4.3 +/- 0.34 and 5.1 +/- 0.35. These slopes are about double those reported previously, suggesting that the cooperativity of Ca2+ activation in frog cardiac myofibrils is as strong as in fast skeletal muscle. The shape of the pCa/force relationship differs from that usually reported for skeletal muscle in that it closely follows the ideal fitted Hill plot with a single slope while that of skeletal muscle appears steeper in the lower than in the upper half. The rate of tension redevelopment following release restretch protocol increases with Ca2+ >10-fold and continues to rise after Ca2+ activated tension saturates. This finding provides support for a strong kinetic mechanism of force regulation by Ca2+ in frog cardiac muscle, at variance with previous reports on mammalian heart muscle. The maximum rate of tension redevelopment following restretch is approximately twofold faster for atrial than for ventricular myocytes, in accord with the idea that the intrinsic speed of the contractile proteins is faster in atrial than in ventricular myocardium.  相似文献   

19.
Regulation of intracellular Mg2+ activity in the heart is not well characterized. Cardiac myocytes were prepared as primary cultures from 7 day old chick embryo hearts and intracellular Mg2+ concentration [( Mg2+]i) was determined in single ventricular cells with mag-fura-2. Basal [Mg2+]i was 0.48 +/- 0.03 mM in normal culture medium. There was no correlation of basal [Mg2+]i with cellular contraction or intracellular [Ca2+]i (determined with fura-2). Cardiocytes cultured (16 hr) in low Mg (0.16 mM) media contained 0.21 +/- 0.05 mM Mg2+ which returned to normal levels when placed in Mg media with a refill time of 20 min. Basal [Ca2+]i (121 +/- 11 nM) and stimulated [Ca2+]i (231 +/- 41 nM) was similar to control cells. Verapamil, 25 microM, reversibly blocked Mg2+ refill. In conclusion, the basal [Mg2+]i of isolated cardiomyocytes is considerably below the Mg2+ electrochemical equilibrium allowing passive Mg2+ influx. The influx pathway for Mg2+ is inhibited by verapamil and appears to be independent of Ca2+ as assessed by fura-2.  相似文献   

20.
Adhikari BB  Wang K 《FEBS letters》2001,497(2-3):95-98
S100, a subfamily of the EF-hand type calcium sensing proteins, is implicated in many cellular functions including muscle contractility. Two isoforms, S100A1 and S100B, at 2-10 microM significantly inhibit active tension, stiffness and ATPase of skinned single rabbit psoas muscle fibers at sub-maximal (pCa approximately 6.1-5.6), but not at maximal levels of activation (pCa 4.0). S100A1 is a more potent inhibitor than S100B. Hill analysis of the ATPase-pCa and tension-pCa curves indicates that these proteins reduce calcium sensitivity and enhance the cooperativity toward calcium. We propose S100A1, and perhaps S100B, are viable candidates as physiological modulators of muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号