首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gamma subunit of the F1 portion of the chloroplast ATP synthase contains a critically placed dithiol that provides a redox switch converting the enzyme from a latent to an active ATPase. The switch prevents depletion of intracellular ATP pools in the dark when photophosphorylation is inactive. The dithiol is located in a special regulatory segment of about 40 amino acids that is absent from the gamma subunits of the eubacterial and mitochondrial enzymes. Site-directed mutagenesis was used to probe the relationship between the structure of the gamma regulatory segment and its function in ATPase regulation via its interaction with the inhibitory epsilon subunit. Mutations were designed using a homology model of the chloroplast gamma subunit based on the analogous structures of the bacterial and mitochondrial homologues. The mutations included (a) substituting both of the disulfide-forming cysteines (Cys199 and Cys205) for alanines, (b) deleting nine residues containing the dithiol, (c) deleting the region distal to the dithiol (residues 224-240), and (d) deleting the entire segment between residues 196 and 241 with the exception of a small spacer element, and (e) deleting pieces from a small loop segment predicted by the model to interact with the dithiol domain. Deletions within the dithiol domain and within parts of the loop segment resulted in loss of redox control of the ATPase activity of the F1 enzyme. Deleting the distal segment, the whole regulatory domain, or parts of the loop segment had the additional effect of reducing the maximum extent of inhibition obtained upon adding the epsilon subunit but did not abolish epsilon binding. The results suggest a mechanism by which the gamma and epsilon subunits interact with each other to induce the latent state of the enzyme.  相似文献   

2.
ATP hydrolysis by the isolated F(1)-ATPase drives the rotation of the central shaft, subunit gamma, which is located within a hexagon formed by subunits (alphabeta)(3). The C-terminal end of gamma forms an alpha-helix which properly fits into the "hydrophobic bearing" provided by loops of subunits alpha and beta. This "bearing" is expected to be essential for the rotary function. We checked the importance of this contact region by successive C-terminal deletions of 3, 6, 9, 12, 15, and 18 amino acid residues (Escherichia coli F(1)-ATPase). The ATP hydrolysis activity of a load-free ensemble of F(1) with 12 residues deleted decreased to 24% of the control. EF(1) with deletions of 15 or 18 residues was inactive, probably because it failed to assemble. The average torque generated by a single molecule of EF(1) when loaded by a fluorescent actin filament was, however, unaffected by deletions of up to 12 residues, as was their rotational behavior (all samples rotated during 60 +/- 19% of the observation time). Activation energy analysis with the ensemble revealed a moderate decrease from 54 kJ/mol for EF(1) (full-length gamma) to 34 kJ/mol for EF(1)(gamma-12). These observations imply that the intactness of the C terminus of subunit gamma provides structural stability and/or routing during assembly of the enzyme, but that it is not required for the rotary action under load, proper.  相似文献   

3.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a catch by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

4.
Electron transport, the proton gradient and ATP synthesis were determined in thylakoids that had been briefly exposed to a low concentration of trypsin during illumination. This treatment cleaves the gamma subunit of the ATP synthase into two large fragments that remain associated with the enzyme. Higher rates of electron transport are required to generate a given value of the proton gradient in the trypsin-treated membranes than in control membranes, indicating that the treated membranes are proton leaky. Since venturicidin restores electron transport and the proton gradient to control levels, the proton leak is through the ATP synthase. Remarkably, the synthesis of ATP by the trypsin-treated membranes at saturating light intensities is only slightly inhibited even though the proton gradient is significantly lower in the treated thylakoids. ATP synthesis and the proton gradient were determined as a function of light intensity in control and trypsin-treated thylakoids. The trypsin-treated membranes synthesized ATP at lower values of the proton gradient than the control membranes. Cleavage of the gamma subunit abrogates inhibition of the activity of the chloroplast ATP synthase by the epsilon subunit. Our results suggest that overcoming inhibition by the epsilon subunit costs energy.  相似文献   

5.
Jeremy R. McCallum 《BBA》2007,1767(7):974-979
Electron transport, the proton gradient and ATP synthesis were determined in thylakoids that had been briefly exposed to a low concentration of trypsin during illumination. This treatment cleaves the γ subunit of the ATP synthase into two large fragments that remain associated with the enzyme. Higher rates of electron transport are required to generate a given value of the proton gradient in the trypsin-treated membranes than in control membranes, indicating that the treated membranes are proton leaky. Since venturicidin restores electron transport and the proton gradient to control levels, the proton leak is through the ATP synthase. Remarkably, the synthesis of ATP by the trypsin-treated membranes at saturating light intensities is only slightly inhibited even though the proton gradient is significantly lower in the treated thylakoids. ATP synthesis and the proton gradient were determined as a function of light intensity in control and trypsin-treated thylakoids. The trypsin-treated membranes synthesized ATP at lower values of the proton gradient than the control membranes. Cleavage of the γ subunit abrogates inhibition of the activity of the chloroplast ATP synthase by the ε subunit. Our results suggest that overcoming inhibition by the ε subunit costs energy.  相似文献   

6.
7.
Although the binding of nucleotides at the noncatalytic sites of F1-ATPase has been regarded as probably having some type of regulatory function, only limited observations have been reported that support such a role. We present here results showing that the presence of ATP at noncatalytic sites can give a fivefold enhancement of the rate of GTP hydrolysis by the chloroplast F1-ATPase. Heat-activation of the chloroplast F1-ATPase in the presence of ATP, followed by column separation from the medium nucleotides gives an enzyme with two of the three noncatalytic sites filled with ATP. In contrast, heat-activation in the presence of ADP gives an enzyme with only one noncatalytic site filled with ADP. Such an enzyme with two noncatalytic sites empty catalyzes MgGTP hydrolysis only very slowly. The filling of a second noncatalytic site with ATP by exposure of the enzyme to ATP without Mg2+ present, followed by column separation, markedly increases the rate of GTP hydrolysis. A further increase occurs when a third noncatalytic site is filled by exposure to Mg2+ and ATP. The rate of MgATP hydrolysis is the same for the enzyme heat-activated in the presence of ATP or ADP, probably because MgATP, unlike MgGTP, rapidly binds to both catalytic and noncatalytic sites.  相似文献   

8.
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).  相似文献   

9.
Feniouk BA  Junge W 《FEBS letters》2005,579(23):5114-5118
F(0)F(1)-ATP synthase couples ATP synthesis/hydrolysis with transmembrane proton transport. The catalytic mechanism involves rotation of the gamma epsilon c(approximately 10)-subunits complex relative to the rest of the enzyme. In the absence of protonmotive force the enzyme is inactivated by the tight binding of MgADP. Subunit epsilon also modulates the activity: its conformation can change from a contracted to extended form with C-terminus stretched towards F(1). The latter form inhibits ATP hydrolysis (but not synthesis). We propose that the directionality of the coiled-coil subunit gamma rotation determines whether subunit epsilon is in contracted or extended form. Block of rotation by MgADP presumably induces the extended conformation of subunit epsilon. This conformation might serve as a safety lock, stabilizing the ADP-inhibited state upon de-energization and preventing spontaneous re-activation and wasteful ATP hydrolysis. The hypothesis merges the known regulatory effects of ADP, protonmotive force and conformational changes of subunit epsilon into a consistent picture.  相似文献   

10.
General structural features of the chloroplast ATP synthase are summarized highlighting differences between the chloroplast enzyme and other ATP synthases. Much of the review is focused on the important interactions between the epsilon and gamma subunits of the chloroplast coupling factor 1 (CF(1)) which are involved in regulating the ATP hydrolytic activity of the enzyme and also in transferring energy from the membrane segment, chloroplast coupling factor 0 (CF(0)), to the catalytic sites on CF(1). A simple model is presented which summarizes properties of three known states of activation of the membrane-bound form of CF(1). The three states can be explained in terms of three different bound conformational states of the epsilon subunit. One of the three states, the fully active state, is only found in the membrane-bound form of CF(1). The lack of this state in the isolated form of CF(1), together with the confirmed presence of permanent asymmetry among the alpha, beta and gamma subunits of isolated CF(1), indicate that ATP hydrolysis by isolated CF(1) may involve only two of the three potential catalytic sites on the enzyme. Thus isolated CF(1) may be different from other F(1) enzymes in that it only operates on 'two cylinders' whereby the gamma subunit does not rotate through a full 360 degrees during the catalytic cycle. On the membrane in the presence of a light-induced proton gradient the enzyme assumes a conformation which may involve all three catalytic sites and a full 360 degrees rotation of gamma during catalysis.  相似文献   

11.
Ni ZL  Dong H  Wei JM 《The FEBS journal》2005,272(6):1379-1385
Five truncation mutants of chloroplast ATP synthase gamma subunit from spinach (Spinacia oleracea) lacking 8, 12, 16, 20 or 60 N-terminal amino acids were generated by PCR by a mutagenesis method. The recombinant gamma genes were overexpressed in Escherichia coli and assembled with alphabeta subunits into a native complex. The wild-type (WT) alphabetagamma assembly i.e. alphabetagammaWT exhibited high (Mg2+)-dependent and (Ca2+)-dependent ATP hydrolytic activity. Deletions of eight residues of the gamma subunit N-terminus caused a decrease in rates of ATP hydrolysis to 30% of that of the alphabetaWT assembly. Furthermore, only approximately 6% of ATP hydrolytic activity was retained with the sequential deletions of gamma subunit up to 20 residues compared with the activity of the alphabetaWT assembly. The inhibitory effect of the epsilon subunit on ATP hydrolysis of these alphabetagamma assemblies varied to a large extent. These observations indicate that the N-terminus of the gamma subunit is very important, together with other regions of the gamma subunit, in stabilization of the enzyme complex or during cooperative catalysis. In addition, the in vitro binding assay showed that the gamma subunit N-terminus is not a crucial region in binding of the epsilon subunit.  相似文献   

12.
Malyan  A.N. 《Photosynthetica》2018,56(4):1365-1369
Photosynthetica - Dependence of ATP hydrolysis kinetics by the chloroplast coupling factor (CF1) on medium viscosity was studied at varying temperatures. For samples with oxidized and reduced CF1...  相似文献   

13.
F1-ATPase, a soluble part of the F0F1-ATP synthase, has subunit structure alpha3beta3gammadeltaepsilon in which nucleotide-binding sites are located in the alpha and beta subunits and, as believed, in none of the other subunits. However, we report here that the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus strain PS3 can bind ATP. The binding was directly demonstrated by isolating the epsilon subunit-ATP complex with gel filtration chromatography. The binding was not dependent on Mg2+ but was highly specific for ATP; however, ADP, GTP, UTP, and CTP failed to bind. The epsilon subunit lacking the C-terminal helical hairpin was unable to bind ATP. Although ATP binding to the isolated epsilon subunits from other organisms has not been detected under the same conditions, a possibility emerges that the epsilon subunit acts as a built in cellular ATP level sensor of F0F1-ATP synthase.  相似文献   

14.
15.
Delta mu H(+) is known to stimulate the enzyme activity of chloroplast ATP synthase in addition to its important role as energy supply for ATP synthesis. In the present study, we focused on the relationship between the proton translocation via the membrane sector of ATP synthase, F(o), and the conformational change of the central stalk subunit gamma. The conformational change of CF(1) mainly at the gamma subunit was induced by the proton flow via F(o) in the absence of substrates. The effects of inhibitors on CF(o) or CF(1) for this conformational change were also examined. The observed conformational change was partially suppressed by ADP binding. From these results, we propose the Delta mu H(+)-dependent conformational change of CF(1) on the enzyme activation process, which is affected by both ADP binding to the catalytic sites and proton flow via F(o) portion.  相似文献   

16.
Kato-Yamada Y 《FEBS letters》2005,579(30):6875-6878
Previously, we demonstrated ATP binding to the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus PS3 [Kato-Yamada Y., Yoshida M. (2003) J. Biol. Chem. 278, 36013]. However, whether it is a general feature of the epsilon subunit from other sources is yet unclear. Here, using a sensitive method to detect weak interactions between fluorescently labeled epsilon subunit and nucleotide, it was shown that the epsilon subunit of F1-ATPase from Bacillus subtilis also bound ATP. The dissociation constant for ATP binding at room temperature was calculated to be 2 mM, which may be suitable for sensing cellular ATP concentration in vivo.  相似文献   

17.
Hisabori T  Kondoh A  Yoshida M 《FEBS letters》1999,450(1-2):35-38
Desethylamiodarone (DEA) acts as a competitive inhibitor of triiodothyronine (T3) binding to the alpha1-thyroid hormone receptor (TR alpha1) but as a non-competitive inhibitor with respect to TR beta1. To gain insight into the position of the binding site of desethylamiodarone on TR beta1 we investigated the naturally occurring mutants Y321C, R429Q, P453A, P453T and the artificial mutants L421R and E457A in the ligand binding domain of human TR beta1. The IC50 values (in microM) of DEA for P453A (50 +/- 11) and P453T (55 +/- 16) mutant TR beta1 are not different from that for the wild type TR beta1 (56 +/- 15), but the IC50 values of R429Q (32 +/- 7; P<0.001) and E457A (17 +/- 3; P<0.001) are significantly lower than of the wild type. Scatchard plots and Langmuir analyses indicate a non-competitive nature of the inhibition by DEA of T3 binding to all four mutant TR beta1s tested. Mutants P453A and P453T do not influence overall electrostatic potential, and also do not influence the affinity for DEA compared to wild type. Mutant E457A causes a change from a negatively charged amino acid to a hydrophobic amino acid, enhancing the affinity for DEA. Mutant R429Q, located in helix 11, causes an electrostatic potential change from positive to uncharged, also resulting in greater affinity for DEA. We therefore postulate that amino acids R429 and E457 are at or close to the binding site for DEA, and that DEA does not bind in the T3 binding pocket itself, in line with the non-competitive nature of the inhibition of T3 binding to TR beta1 by DEA.  相似文献   

18.
Synthesis of ATP from ADP and phosphate, catalyzed by F(0)F(1)-ATP synthases, is the most abundant physiological reaction in almost any cell. F(0)F(1)-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F(0)F(1)-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The gamma subunit rotates stepwise during proton transport-powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.  相似文献   

19.
Arabidopsis thaliana has two genes (atpC1, atpC2) coding for gamma subunits of chloroplast ATP synthase. The atpC1 and atpC2 were cloned and sequenced. They had no introns within the reading frames and coded for proteins of 373 and 386 amino acid residues, respectively, including putative transit sequences (50 and 60 amino acid residues, respectively). In contrast, the spinach gamma subunit gene had two introns within the reading frame. The mature sequences coded by the two genes of A. thaliana (atpC1, 323 residues; atpC2, 326 residues) were homologous with that of spinach (J. Miki, M. Maeda, Y. Mukohata, and M. Futai (1988) FEBS Lett. 232, 221-226): the homologies of gamma subunits coded by atpC1 and atpC2 were 72%, those of the subunits coded by atpC1 and spinach cDNA were 84%, and those of the proteins coded by atpC2 and spinach cDNA were 71%. Like the spinach subunit, the gamma subunits coded by the two genes had unique regulatory domains not found in mitochondrial or bacterial subunits. Poly(A)+ mRNAs corresponding to atpC1 (1.5 kilobases) and atpC2 (2.5 kilobases) were detected in illuminated plants, the amount of the former being at least 140 times that of the latter. The atpC1 mRNA was not found in dark-adapted plants. Nuclear protein(s) specifically bound to the upstream region of atpC1 was detected by gel shift assay and its binding was shown to be inhibited by the GT-1 element of the gene encoding the ribulose-1,5-bisphosphate carboxylase small subunit, which is expressed under illumination (P. J. Green, S. A. Kay, and N. H. Chau (1987) EMBO J. 6, 2543-2549). Consistent with these findings, an increased amount of the gamma subunit was detected immunochemically in illuminated plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号