首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
D W Cook 《Applied microbiology》1994,60(9):3483-3484
After harvest, shellstock oysters stored under controlled temperatures of 10, 13, and 18 degrees C and at ambient outside air temperature (23 to 34 degrees C) were sampled after 12 and 30 h for Vibrio vulnificus. At 13 degrees C and below, V. vulnificus failed to multiply in the oysters. In oysters held at 18 degrees C for 30 h and under ambient conditions for 12 and 30 h, V. vulnificus numbers were statistically greater (P < 0.05) than those in oysters at harvest. These data indicate that endogenous V. vulnificus can multiply in unchilled shellstock oysters.  相似文献   

2.
DNA extraction procedures and PCR conditions to detect Vibrio vulnificus cells naturally occurring in oysters were developed. In addition, PCR amplification of V. vulnificus from oysters seeded with biotype 1 cells was demonstrated. By the methods described, V. vulnificus cells on a medium (colistin-polymyxin B-cellobiose agar) selective for this pathogen were detectable in oysters harvested in January and March, containing no culturable cells (< 67 CFU/g), as well as in oysters harvested in May and June, containing culturable cells. It was possible to complete DNA extraction, PCR, and gel electrophoresis within 10 h by using the protocol described for oysters. V. vulnificus biotype 2 cells were also detected in eel tissues that had been infected with this strain and subsequently preserved in formalin. The protocol used for detection of V. vulnificus cells in eels required less than 5 h to complete. Optimum MgCl2 concentrations for the PCR of V. vulnificus from oysters and eels were different, although the same primer pair was used for both. This is the first report on the detection of cells of V. vulnificus naturally present in shellfish and represents a potentially powerful method for monitoring this important human and eel pathogen.  相似文献   

3.
Vibrio vulnificus is an estuarine bacterium responsible for 95% of all seafood-related deaths in the United States. The bacterium occurs naturally in molluscan shellfish, and ingestion of raw oysters is typically the source of human infection. V. vulnificus is also known to enter a viable but nonculturable (VBNC) state, wherein the cells are no longer culturable on routine plating media but can be shown to remain viable. Whether or not this human pathogen remains virulent when entering the VBNC state has not been definitively demonstrated. In this study, the VBNC state was induced through a temperature downshift to 5 degrees C, with cells becoming nonculturable (< 0.1 CFU/ml) within 7 days. As they became nonculturable, virulence was determined by employing an iron overload mouse model. At the point of nonculturability (7 days), injections of the diluted microcosm population resulted in death when < 0.04 CFU was inoculated, although > 10(5) cells in the VBNC state were present in the inoculum. Culturable cells of V. vulnificus, with identification confirmed through PCR, were recovered from the blood and peritoneal cavities of mice which had died from injections of cells present in the VBNC state for at least 3 days. Thus, our data suggest that cells of V. vulnificus remain virulent, at least for some time, when present in the VBNC state and are capable of causing fatal infections following in vivo resuscitation. Our studies also indicate, however, that virulence decreases significantly as cells enter the VBNC state, which may account, at least to some extent, for the decrease in infections caused by this bacterium during winter months.  相似文献   

4.
Distribution of Vibrio vulnificus in the Chesapeake Bay.   总被引:10,自引:1,他引:9       下载免费PDF全文
Vibrio vulnificus is a potentially lethal human pathogen capable of producing septicemia in susceptible persons. Disease is almost always associated with consumption of seafood, particularly raw oysters, or with exposure of wounds to seawater. An oligonucleotide DNA probe (V. vulnificus alkaline phosphatase-labeled DNA probe [VVAP]), previously shown to be highly specific for V. vulnificus, was used to enumerate this species in environmental samples collected from the Chesapeake Bay between April 1991 and December 1992. Total aerobic, heterotrophic, culturable bacteria were enumerated by plate counts on nonselective medium. The number of V. vulnificus organisms was determined by colony lifts of spread plates for subsequent hybridization with VVAP. V. vulnificus was not detected in any samples collected during February and March (water temperature of < 8 degrees C) but was found in 80% of the water samples collected during May, July, September, and December (water temperature of > 8 degrees C), with concentrations ranging from 3.0 x 10(1) to 2.1 x 10(2)/ml (ca. 8% of the total culturable heterotrophic bacteria). In a multiple regression analysis, increased V. vulnificus concentrations were correlated with lower salinities and with isolation from samples collected closer to the bottom. Isolation from oysters was demonstrable when water temperatures were 7.6 degrees C, with concentrations ranging from 1.0 x 10(3) to 4.7 x 10(4)/g (ca. 12% of total culturable bacteria). In samples collected in May and July, V. vulnificus was identified in seven of seven plankton samples and four of nine sediment samples. Our data demonstrate that V. vulnificus is a widespread and important component of the bacterial population of the Chesapeake Bay, with counts that are comparable to those reported from the Gulf of Mexico.  相似文献   

5.
Opaque and translucent morphotypes of a TnphoA-containing strain of Vibrio vulnificus were fed to oysters, which were subsequently stored at temperatures ranging from 0.5 to 22 degrees C for 10 days. Samples of oysters were homogenized and plated at intervals to determine the cell density of V. vulnificus and total aerobic population of bacteria present. At all temperatures, the numbers of V. vulnificus (both morphotypes) declined over the 10-day study period. The same observation was made with a lower inoculum of V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus to levels below limits of detection. Little change in the total bacterial counts was observed in shellstock oysters at any of the test temperatures, whereas incubation at the higher temperatures (17 and 22 degrees C) resulted in large increases in total counts in shucked oysters. These data suggest that temperature abuse of oysters may not be a factor in increasing the public health risk of V. vulnificus through raw oyster consumption. However, the data also suggest that even with proper storage, indigenous levels of V. vulnificus may remain sufficiently higher in shellstock oysters to produce infection in compromised hosts.  相似文献   

6.
Opaque and translucent morphotypes of a TnphoA-containing strain of Vibrio vulnificus were fed to oysters, which were subsequently stored at temperatures ranging from 0.5 to 22 degrees C for 10 days. Samples of oysters were homogenized and plated at intervals to determine the cell density of V. vulnificus and total aerobic population of bacteria present. At all temperatures, the numbers of V. vulnificus (both morphotypes) declined over the 10-day study period. The same observation was made with a lower inoculum of V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus. Identical experiments with shucked oysters showed a more rapid decrease in V. vulnificus to levels below limits of detection. Little change in the total bacterial counts was observed in shellstock oysters at any of the test temperatures, whereas incubation at the higher temperatures (17 and 22 degrees C) resulted in large increases in total counts in shucked oysters. These data suggest that temperature abuse of oysters may not be a factor in increasing the public health risk of V. vulnificus through raw oyster consumption. However, the data also suggest that even with proper storage, indigenous levels of V. vulnificus may remain sufficiently higher in shellstock oysters to produce infection in compromised hosts.  相似文献   

7.
Postharvest growth of Vibrio vulnificus in oysters can increase risk of human infection. Unfortunately, limited information is available regarding V. vulnificus growth and survival patterns over a wide range of storage temperatures in oysters harvested from different estuaries and in different oyster species. In this study, we developed a predictive model for V. vulnificus growth in Eastern oysters (Crassostrea virginica) harvested from Chesapeake Bay, MD, over a temperature range of 5 to 30°C and then validated the model against V. vulnificus growth rates (GRs) in Eastern and Asian oysters (Crassostrea ariakensis) harvested from Mobile Bay, AL, and Chesapeake Bay, VA, respectively. In the model development studies, V. vulnificus was slowly inactivated at 5 and 10°C with average GRs of -0.0045 and -0.0043 log most probable number (MPN)/h, respectively. Estimated average growth rates at 15, 20, 25, and 30°C were 0.022, 0.042, 0.087, and 0.093 log MPN/h, respectively. With respect to Eastern oysters, bias (B(f)) and accuracy (A(f)) factors for model-dependent and -independent data were 1.02 and 1.25 and 1.67 and 1.98, respectively. For Asian oysters, B(f) and A(f) were 0.29 and 3.40. Residual variations in growth rate about the fitted model were not explained by season, region, water temperature, or salinity at harvest. Growth rate estimates for Chesapeake Bay and Mobile Bay oysters stored at 25 and 30°C showed relatively high variability and were lower than Food and Agricultural Organization (FAO)/WHO V. vulnificus quantitative risk assessment model predictions. The model provides an improved tool for designing and implementing food safety plans that minimize the risk associated with V. vulnificus in oysters.  相似文献   

8.
Vibriosis is a leading cause of seafood-associated morbidity and mortality in the United States. Typically associated with consumption of raw or undercooked oysters, vibriosis associated with clam consumption is increasingly being reported. However, little is known about the prevalence of Vibrio spp. in clams. The objective of this study was to compare the levels of Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus in oysters and clams harvested concurrently from Long Island Sound (LIS). Most probable number (MPN)–real-time PCR methods were used for enumeration of total V. cholerae, V. vulnificus, V. parahaemolyticus, and pathogenic (tdh+ and/or trh+) V. parahaemolyticus. V. cholerae was detected in 8.8% and 3.3% of oyster (n = 68) and clam (n = 30) samples, with levels up to 1.48 and 0.48 log MPN/g in oysters and clams, respectively. V. vulnificus was detected in 97% and 90% of oyster and clam samples, with median levels of 0.97 and −0.08 log MPN/g, respectively. V. parahaemolyticus was detected in all samples, with median levels of 1.88 and 1.07 log MPN/g for oysters and clams, respectively. The differences between V. vulnificus and total and pathogenic V. parahaemolyticus levels in the two shellfish species were statistically significant (P < 0.001). These data indicate that V. vulnificus and total and pathogenic V. parahaemolyticus are more prevalent and are present at higher levels in oysters than in hard clams. Additionally, the data suggest differences in vibrio populations between shellfish harvested from different growing area waters within LIS. These results can be used to evaluate and refine illness mitigation strategies employed by risk managers and shellfish control authorities.  相似文献   

9.
This study investigated the temperature and salinity parameters associated with waters and oysters linked to food-borne Vibrio vulnificus infections. V. vulnificus was enumerated in oysters collected at three northern Gulf Coast sites and two Atlantic Coast sites from July 1994 through September 1995. Two of these sites, Black Bay, La., and Apalachicola Bay, Fla., are the source of the majority of the oysters implicated in V. vulnificus cases. Oysters in all Gulf Coast sites exhibited a similar seasonal distribution of V. vulnificus: a consistently large number (median concentration, 2,300 organisms [most probable number] per g of oyster meat) from May through October followed by a gradual reduction during November and December to ≤10 per g, where it remained from January through mid-March, and a sharp increase in late March and April to summer levels. V. vulnificus was undetectable (<3 per g) in oysters from the North and South Carolina sites for most of the year. An exception occurred when a late-summer flood caused a drop in salinity in the North Carolina estuary, apparently causing V. vulnificus numbers to increase briefly to Gulf Coast levels. At Gulf Coast sites, V. vulnificus numbers increased with water temperatures up to 26°C and were constant at higher temperatures. High V. vulnificus levels (>103 per g) were typically found in oysters from intermediate salinities (5 to 25 ppt). Smaller V. vulnificus numbers (<102 per g) were found at salinities above 28 ppt, typical of Atlantic Coast sites. On 11 occasions oysters were sampled at times and locations near the source of oysters implicated in 13 V. vulnificus cases; the V. vulnificus levels and environmental parameters associated with these samples were consistent with those of other study samples collected from the Gulf Coast from April through November. These findings suggest that the hazard of V. vulnificus infection is not limited to brief periods of unusual abundance of V. vulnificus in Gulf Coast oysters or to environmental conditions that are unusual to Gulf Coast estuaries.  相似文献   

10.
When two species of shellstock oysters were artificially contaminated with Vibrio vulnificus, the bacterium survived when the oysters were stored at 10 degrees C and below. Large numbers of endogenous V. vulnificus cells were found after 7 days at both 0.5 and 10 degrees C in uninoculated control oysters (Crassostrea virginica). Oysters allowed to take up V. vulnificus from seawater retained the bacterium for 14 days at 2 degrees C. The presence of V. vulnificus in the drip exuded from the shellstock presented a possibility of contamination of other shellstock in storage. V. vulnificus injected into shucked Pacific (Crassostrea gigas) and Eastern (C. virginica) oysters survived at 4 degrees C for at least 6 days. An 18-h most-probable-number enrichment step in alkaline peptone water gave higher recovery levels of V. vulnificus than did direct plating to selective agars. The survival of this pathogen in both shellstock and shucked oysters suggests a potential for human illness, even though the product is refrigerated.  相似文献   

11.
When two species of shellstock oysters were artificially contaminated with Vibrio vulnificus, the bacterium survived when the oysters were stored at 10 degrees C and below. Large numbers of endogenous V. vulnificus cells were found after 7 days at both 0.5 and 10 degrees C in uninoculated control oysters (Crassostrea virginica). Oysters allowed to take up V. vulnificus from seawater retained the bacterium for 14 days at 2 degrees C. The presence of V. vulnificus in the drip exuded from the shellstock presented a possibility of contamination of other shellstock in storage. V. vulnificus injected into shucked Pacific (Crassostrea gigas) and Eastern (C. virginica) oysters survived at 4 degrees C for at least 6 days. An 18-h most-probable-number enrichment step in alkaline peptone water gave higher recovery levels of V. vulnificus than did direct plating to selective agars. The survival of this pathogen in both shellstock and shucked oysters suggests a potential for human illness, even though the product is refrigerated.  相似文献   

12.
Vibrio vulnificus is a leading cause of seafood-related deaths in the United States. Sequence variations in the virulence-correlated gene (vcg) have been used to distinguish between clinical and environmental V. vulnificus strains, with a strong association between clinical ones and the C sequence variant (vcgC). In this study, vcgC was selected as the target to design a loop-mediated isothermal amplification (LAMP) assay for the rapid, sensitive, specific, and quantitative detection of potentially virulent V. vulnificus strains in raw oysters. No false-positive or false-negative results were generated among the 125 bacterial strains used to evaluate assay specificity. The detection limit was 5.4 CFU per reaction for a virulent V. vulnificus strain (ATCC 33815) in pure culture, 100-fold more sensitive than that of PCR. In spiked raw oysters, the assay was capable of detecting 2.5 × 10(3) CFU/g of V. vulnificus ATCC 33815, while showing negative results for a nonvirulent V. vulnificus strain (515-4c2) spiked at 10(7) CFU/g. After 6 h of enrichment, the LAMP assay could detect 1 CFU/g of the virulent V. vulnificus strain ATCC 33815. Standard curves generated in pure culture and spiked oysters suggested a good linear relationship between cell numbers of the virulent V. vulnificus strain and turbidity signals. In conclusion, the LAMP assay developed in this study could quantitatively detect potentially virulent V. vulnificus in raw oysters with high speed, specificity, and sensitivity, which may facilitate better control of V. vulnificus risks associated with raw oyster consumption.  相似文献   

13.
Rotavirus virus-like particles (VLPs) and MS2 bacteriophages were bioaccumulated in bivalve mollusks to evaluate viral persistence in shellfish during depuration and relaying under natural conditions. Using this nonpathogenic surrogate virus, we were able to demonstrate that about 1 log10 of VLPs was depurated after 1 week in warm seawater (22°C). Phage MS2 was depurated more rapidly (about 2 log10 in 1 week) than were VLPs, as determined using a single-compartment model and linear regression analysis. After being relayed in the estuary under the influence of the tides, VLPs were detected in oysters for up to 82 days following seeding with high levels of VLPs (concentration range between 1010 and 109 particles per g of pancreatic tissue) and for 37 days for lower contamination levels (105 particles per g of pancreatic tissue). These data suggest that viral particles may persist in shellfish tissues for several weeks.  相似文献   

14.
Postharvest processing (PHP) is used to reduce levels of Vibrio vulnificus in oysters, but process validation is labor-intensive and expensive. Therefore, quantitative PCR was evaluated as a rapid confirmation method for most-probable-number enumeration (QPCR-MPN) of V. vulnificus bacteria in PHP oysters. QPCR-MPN showed excellent correlation (R(2) = 0.97) with standard MPN and increased assay sensitivity and efficiency.  相似文献   

15.
Postharvest processing (PHP) is used to reduce levels of Vibrio vulnificus in oysters, but process validation is labor-intensive and expensive. Therefore, quantitative PCR was evaluated as a rapid confirmation method for most-probable-number enumeration (QPCR-MPN) of V. vulnificus bacteria in PHP oysters. QPCR-MPN showed excellent correlation (R2 = 0.97) with standard MPN and increased assay sensitivity and efficiency.  相似文献   

16.
Sterilized seawater was used to assess the effects of temperature and salinity on the survival of Vibrio vulnificus. In the temperature range of 13 to 22 degrees C, numbers of V. vulnificus increased during the 6-day incubation. Temperatures outside this range reduced the time of V. vulnificus survival in sterile 10-ppt seawater. At these restrictive temperatures, V. vulnificus numbers were reduced by 90% after 6 days of incubation. Incubation between 0.5 and 10.5 degrees C demonstrated that V. vulnificus survives poorly below 8.5 degrees C. At salinities between 5 and 25 ppt and at 14 degrees C, V. vulnificus numbers actually increased or remained unchanged after 6 days of incubation. At salinities of 30, 35, and 38 ppt, numbers of V. vulnificus decreased 58, 88, and 83%, respectively. V. vulnificus could not be recovered from deionized water, indicating lysis. When a rifampin-resistant strain of V. vulnificus was used to inoculate sterilized and unsterilized seawater (20 ppt, 20 degrees C), numbers increased in sterile seawater but decreased to undetectable levels in 14 days in the unsterilized seawater, indicating that biological factors may play a role in the survival of V. vulnificus in the environment. Since our studies demonstrated sensitivity to low temperatures, the survival of V. vulnificus in naturally contaminated oysters at temperatures of 0, 2, and 4 degrees C was also determined. Numbers of endogenous V. vulnificus in oyster shellstock increased by more than 100-fold in shellstock stored at 30 degrees C but were reduced approximately 10- and 100-fold after 14 days at 2 to 4 degrees C and 0 degrees C, respectively. We conclude that both biological and physicochemical factors are important to the survival of V. vulnificus in the environment and that temperature is critical to controlling its growth in oyster shellstock.  相似文献   

17.
Vibrio vulnificus is an autochthonous estuarine bacterium and a pathogen that is frequently transmitted via raw shellfish. Septicemia can occur within 24 h; however, isolation and confirmation from water and oysters require days. Real-time PCR assays were developed to detect and differentiate two 16S rRNA variants, types A and B, which were previously associated with environmental sources and clinical fatalities, respectively. Both assays could detect 102 to 103 V. vulnificus total cells in seeded estuarine water and in oyster homogenates. PCR assays on 11 reference V. vulnificus strains and 22 nontarget species gave expected results (type A or B for V. vulnificus and negative for nontarget species). The relationship between cell number and cycle threshold for the assays was linear (R2 = >0.93). The type A/B ratio of Florida clinical isolates was compared to that of isolates from oysters harvested in Florida waters. This ratio was 19:17 in clinical isolates and 5:8 (n = 26) in oysters harvested from restricted sites with poor water quality but was 10:1 (n = 22) in oysters from permitted sites with good water quality. A substantial percentage of isolates from oysters (19.4%) were type AB (both primer sets amplified), but no isolates from overlying waters were type AB. The real-time PCR assays were sensitive, specific, and quantitative in water samples and could also differentiate the strains in oysters without requiring isolation of V. vulnificus and may therefore be useful for rapid detection of the pathogen in shellfish and water, as well as further investigation of its population dynamics.  相似文献   

18.
In this paper we describe a biological indicator which can be used to study the behavior of Vibrio vulnificus, an important molluscan shellfish-associated human pathogen. A V. vulnificus ATCC 27562 derivative that expresses green fluorescent protein (GFP) and kanamycin resistance was constructed using conjugation. Strain validation was performed by comparing the GFP-expressing strain (Vv-GFP) and the wild-type strain (Vv-WT) with respect to growth characteristics, heat tolerance (45 degrees C), freeze-thaw tolerance (-20(o) and -80 degrees C), acid tolerance (pH 5.0, 4.0, and 3.5), cold storage tolerance (5 degrees C), cold adaptation (15 degrees C), and response to starvation. Levels of recovery were evaluated using nonselective medium (tryptic soy agar containing 2% NaCl) with and without sodium pyruvate. The indicator strain was subsequently used to evaluate the survival of V. vulnificus in oysters exposed to organic acids (citric and acetic acids) and various cooling regimens. In most cases, Vv-GFP was comparable to Vv-WT with respect to growth and survival upon exposure to various biological stressors; when differences between the GFP-expressing and parent strains occurred, they usually disappeared when sodium pyruvate was added to media. When V. vulnificus was inoculated into shellstock oysters, the counts dropped 2 log(10) after 11 to 12 days of refrigerated storage, regardless of the way in which the oysters were initially cooled. Steeper population declines after 12 days of refrigerated storage were observed for both iced and refrigerated products than for slowly cooled product and product held under conservative harvest conditions. By the end of the refrigeration storage study (22 days), the counts of Vv-GFP in iced and refrigerated oysters had reached the limit of detection (10(2) CFU/oyster), but slowly cooled oysters and oysters stored under conservative harvest conditions still contained approximately 10(3) and >10(4) CFU V. vulnificus/oyster by day 22, respectively. The Vv-GFP levels in the oyster meat remained stable for up to 24 h when the meat was exposed to acidic conditions at various pH values. Ease of detection and comparability to the wild-type parent make Vv-GFP a good candidate for use in studying the behavior of V. vulnificus upon exposure to sublethal stressors that might be encountered during postharvest handling of molluscan shellfish.  相似文献   

19.
Rotavirus virus-like particles (VLPs) and MS2 bacteriophages were bioaccumulated in bivalve mollusks to evaluate viral persistence in shellfish during depuration and relaying under natural conditions. Using this nonpathogenic surrogate virus, we were able to demonstrate that about 1 log10 of VLPs was depurated after 1 week in warm seawater (22 degrees C). Phage MS2 was depurated more rapidly (about 2 log10 in 1 week) than were VLPs, as determined using a single-compartment model and linear regression analysis. After being relayed in the estuary under the influence of the tides, VLPs were detected in oysters for up to 82 days following seeding with high levels of VLPs (concentration range between 10(10) and 10(9) particles per g of pancreatic tissue) and for 37 days for lower contamination levels (10(5) particles per g of pancreatic tissue). These data suggest that viral particles may persist in shellfish tissues for several weeks.  相似文献   

20.
Densities of Vibrio vulnificus in the intestinal contents of various finfish, oysters, and crabs and in sediment and waters of the U.S. Gulf Coast were determined by the most probable number procedure. Species were identified by enzyme immunoassay. During the winter, densities of V. vulnificus were low, and the organism was isolated more frequently from sheepshead fish than from sediment and seawater. From April to October, V. vulnificus densities were considerably higher (2 to 5 logs) in estuarine fish than in surrounding water, sediment, or nearby oysters and crustacea. Highest densities were found in the intestinal contents of certain bottom-feeding fish (10(8)/100 g), particularly those that consume mollusks and crustaceans. Densities of V. vulnificus in fish that feed primarily on plankton and other finfish were similar to those in oysters, sediment, and crabs (10(5)/100 g). V. vulnificus was found infrequently in offshore fish. The presence of high densities of V. vulnificus in the intestines of common estuarine fish may have both ecological (growth and transport) and public health (food and wound infections) implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号