首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a novel nanoparticle system for paracellular transport was prepared using a simple and mild ionic-gelation method upon addition of a poly-gamma-glutamic acid (gamma-PGA) solution into a low-molecular-weight chitosan (low-MW CS) solution. The particle size and the zeta potential value of the prepared nanoparticles can be controlled by their constituted compositions. The results obtained by the TEM and AFM examinations showed that the morphology of the prepared nanoparticles was spherical in shape. Evaluation of the prepared nanoparticles in enhancing intestinal paracellular transport was investigated in vitro in Caco-2 cell monolayers. It was found that the nanoparticles with CS dominated on the surfaces could effectively reduce the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers. After removal of the incubated nanoparticles, a gradual increase in TEER was noticed. The confocal laser scanning microscopy observations confirmed that the nanoparticles with CS dominated on the surface were able to open the tight junctions between Caco-2 cells and allowed transport of the nanoparticles via the paracellular pathways.  相似文献   

2.
Numb is highly expressed throughout the crypt-villus axis of intestinal mucosa and functions as cell fate determinant and integrator of cell-to-cell adhesion. Increased paracellular permeability of intestinal epithelial cells is associated with the epithelial barrier dysfunction of inflammatory bowel diseases (IBDs). The apical junctional complex (AJC) assembly and myosin light chain (MLC) phosphorylation regulate adherens junctions (AJ) and tight junctions (TJ). We determined whether and how Numb modulate the paracellular permeability of intestinal epithelial cells. Caco-2 intestinal epithelial cells and their Numb-interfered counterparts were used in the study for physiological, morphological and biological analyses. Numb, expressed in intestinal epithelial cells and located at the plasma membrane of Caco-2 cells in a basolateral to apical distribution, increased in the intestinal epithelial cells with the formation of the intestinal epithelial barrier. Numb expression decreased and accumulated in the cytoplasm of intestinal epithelial cells in a DSS-induced colitis mouse model. Numb co-localized with E-cadherin, ZO-1 and Par3 at the plasma membrane and interacted with E-cadherin and Par3. Knockdown of Numb in Caco-2 cells altered the F-actin structure during the Ca2+ switch assay, enhanced TNFα-/INF-γ-induced intestinal epithelial barrier dysfunction and TJ destruction, and increased the Claudin-2 protein level. Immunofluorescence experiments revealed that NMIIA and F-actin co-localized at the cell surface of Caco-2 cells. Numb knockdown in Caco-2 cells increased F-actin contraction and the abundance of phosphorylated MLC. Numb modulated the intestinal epithelial barrier in a Notch signaling-independent manner. These findings suggest that Numb modulates the paracellular permeability by affecting AJC assembly and MLC phosphorylation.  相似文献   

3.
Previously, we demonstrated that capsaicin induces tight-junction (TJ) opening in human intestinal Caco-2 cells. In order to clarify the mechanism underlying the TJ opening action of capsaicin, we performed a proteomics study on capsaicin-treated Caco-2 cells. Phosphorylated cofilin was decreased significantly by capsaicin treatment. In addition, capsaicin induced Ca2+ influx in Caco-2 cells and there was a clear correlation between Ca2+) influx and cofilin dephosphorylation (activation). The Ca2+-chelating reagent EGTA blocked the cofilin dephosphorylation induced by both capsaicin and ionomycin, suggesting that the dephosphorylation was mediated by Ca2+ influx. Finally, transepithelial electrical resistance measurements showed that TJ opening accompanied cofilin dephosphorylation. Our data suggest that TJ opening is mediated by cofilin dephosphorylation, which is caused by capsaicin stimuli, including Ca2+ influx. This is the first report of capsaicin action via the dephosphorylation of cofilin in human intestinal cells.  相似文献   

4.
Rotaviruses, which infect mature enterocytes of the small intestine, are recognized as the most important cause of viral gastroenteritis in young children. We have previously reported that rotavirus infection induces microvillar F-actin disassembly in human intestinal epithelial Caco-2 cells (N. Jourdan, J. P. Brunet, C. Sapin, A. Blais, J. Cotte-Laffitte, F. Forestier, A. M. Quero, G. Trugnan, and A. L. Servin, J. Virol. 72:7228-7236, 1998). In this study, to determine the mechanism responsible for rotavirus-induced F-actin alteration, we investigated the effect of infection on intracellular calcium concentration ([Ca(2+)](i)) in Caco-2 cells, since Ca(2+) is known to be a determinant factor for actin cytoskeleton regulation. As measured by quin2 fluorescence, viral replication induced a progressive increase in [Ca(2+)](i) from 7 h postinfection, which was shown to be necessary and sufficient for microvillar F-actin disassembly. During the first hours of infection, the increase in [Ca(2+)](i) was related only to an increase in Ca(2+) permeability of plasmalemma. At a late stage of infection, [Ca(2+)](i) elevation was due to both extracellular Ca(2+) influx and Ca(2+) release from the intracellular organelles, mainly the endoplasmic reticulum (ER). We noted that at this time the [Ca(2+)](i) increase was partially related to a phospholipase C (PLC)-dependent mechanism, which probably explains the Ca(2+) release from the ER. We also demonstrated for the first time that viral proteins or peptides, released into culture supernatants of rotavirus-infected Caco-2 cells, induced a transient increase in [Ca(2+)](i) of uninfected Caco-2 cells, by a PLC-dependent efflux of Ca(2+) from the ER and by extracellular Ca(2+) influx. These supernatants induced a Ca(2+)-dependent microvillar F-actin alteration in uninfected Caco-2 cells, thus participating in rotavirus pathogenesis.  相似文献   

5.
The intestinal permeability to hesperidin glycosides was investigated by using a cultured monolayer of Caco-2 as a model for the small intestinal epithelium. Hesperidin glycosides were added to the apical side of the monolayer, and the substances that permeated to the basolateral side were determined by HPLC. Whereas hesperidin did not permeate across the Caco-2 monolayer, probably owing to its low solubility, the hesperidin glycosides did permeate. The transepithelial transport of hesperidin glycosides occurred in time- and dose-dependent manners. The transport was observed to be energy-independent, and was inversely correlated with the transepithelial electrical resistance (TEER) of the monolayer. These results suggest that hesperidin glycosides permeate across the Caco-2 cell monolayer via the paracellular pathway.  相似文献   

6.
Antibodies specific to Salmonella enteritidis (S.E.) were obtained from immunized egg yolk, and their protective effects against S.E. were studied by using monolayer-cultured human intestinal epithelial cells, Caco-2 and T84. The Salmonella adherence and entry to the cells were partially inhibited by the antibodies. The antibodies inhibited the decrease in transepithelial electrical resistance (TEER) of the intestinal epithelial monolayers and IL-8 secretion of the cells induced by S.E. invasion. Also, the antibodies blocked the penetration of bacteria through the cell layer although they did not inhibit the growth of bacteria in the cells. Confocal microscopic photographs revealed the bacteria in the infected monolayer cells were bound to antibodies. These results indicate that anti-S.E. antibodies may protect the cells from destruction induced by S.E. invasion in intestinal epithelial cells in addition to the partial inhibition of adhesion and invasion of S.E. at the cell surface. Passive antibodies against invasive bacteria would be useful to prevent the migration of S.E. to blood not only at the cell surface but also inside of intestinal epithelial cells.  相似文献   

7.
We synthesized a library of polymer-coated gold nanoparticles (AuNPs) with well-defined sizes (5, 10, and 20 nm) and surface properties, and investigated their efficiency to cross the Caco-2 epithelial barrier and disrupt tight junctions connecting the cellular barrier. The positively charged and hydrophobic polymer-coated AuNPs showed little or no translocation across the model Caco-2 monolayer. Most of these positive and hydrophobic nanoparticles were either bound to the surface or internalized within the cell. The neutral and negatively charged polymer-coated AuNPs with a size of 5 nm showed a significantly higher translocation. All polymer-coated AuNPs induced the translocation of small molecules across the cellular monolayer, suggesting the loosening of the paracellular tight junction joining individual cells. The decrease in the TEER values of the monolayers supported the opening of the tight junctions. These tight junctions fully recovered for most polymer-coated AuNPs 12 h after removal of the nanoparticles. The exception was the cationic polymer-coated AuNPs in which the barrier function only recovered up to 62%. The library of polymer-coated AuNPs showed no apparent signs of hemolysis to erythrocytes at physiological pH. Our investigation has provided insight on the influence of polymer coatings on the epithelial barrier.  相似文献   

8.
Rotavirus infection is the most common cause of severe infantile gastroenteritis worldwide. In vivo, rotavirus exhibits a marked tropism for the differentiated enterocytes of the intestinal epithelium. In vitro, differentiated and undifferentiated intestinal cells can be infected. We observed that rotavirus infection of the human intestinal epithelial Caco-2 cells induces cytoskeleton alterations as a function of cell differentiation. The vimentin network disorganization detected in undifferentiated Caco-2 cells was not found in fully differentiated cells. In contrast, differentiated Caco-2 cells presented Ca(2+)-dependent microtubule disassembly and Ca(2+)-independent cytokeratin 18 rearrangement, which both require viral replication. We propose that these structural alterations could represent the first manifestations of rotavirus-infected enterocyte injury leading to functional perturbations and then to diarrhea.  相似文献   

9.
The interaction between intestinal epithelial cells andperipheral neuronal cells were examined using an invitro coculture system. Two cell lines, Caco-2 and PC12, were usedfor this experiment as an intestinal epithelial and entericneuronal cell model, respectively. By coculturing with fullydifferentiated Caco-2 cells, the neurite outgrowth was inducedin PC12 cells. This neurite outgrowth in PC12 was blocked byanti-nerve growth factor (NGF) polyclonal antibodies,suggesting that the neurite outgrowth in PC12 during thecoculture with Caco-2 cells was due to NGF secreted fromCaco-2 cells. On the other hand, coculturing with fullydifferentiated PC12 cells induced the decrease oftransepithelial electrical resistance in Caco-2 cellmonolayers. The permeability of lucifer yellow alsosignificantly increased, suggesting that the barrier functionand paracellular permeability of Caco-2 monolayers werealtered by coculturing with PC12 cells. The present studysuggests that this in vitro coculture system is a good modelfor the functional analysis of interaction among intestinalepithelial cells with different cell types.  相似文献   

10.
Conjugated linoleic acid (CLA) increases paracellular permeability across human intestinal-like Caco-2 cell monolayers, which transport Ca predominantly by the transcellular route. In vivo, however, paracellular Ca transport is the predominant route of Ca transport. Therefore, the objective of this study was to investigate the effect of CLA on transepithelial Ca transport in Caco-2 cells transporting Ca predominantly by the paracellular route. Cells were seeded onto permeable transport membranes and allowed to differentiate, over 14 d, into intestinal-like cell monolayers. Monolayers (n=9/treatment) were exposed to 0 (control) or 80 microM- 18:2, -cis-9, trans-11 CLA or -trans-10, cis-12 CLA for 14 d prior to Ca transport studies. Overall transepithelial Ca transport as well as transcellular and parcellular Ca transport was significantly increased (P<0.001) by exposure of Caco-2 cells to both isomers of CLA, an effect which appeared to be related to altered localization of zona occludens 1 (a tight junction protein).  相似文献   

11.
The intestinal epithelium provides a barrier to the transport of harmful luminal molecules into the systemic circulation. A dysfunctional epithelial barrier is closely associated with the pathogenesis of a variety of intestinal and systemic disorders. We investigated here the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on the barrier function of a human intestinal epithelial cell line, Caco-2. When treated with H(2)O(2), Caco-2 cell monolayers grown on permeable supports exhibited several remarkable features of barrier dysfunction as follows: a decrease in transepithelial electrical resistance, an increase in paracellular permeability to dextran, and a disruption of the intercellular junctional localization of the scaffolding protein ZO-1. In addition, an induction of tyrosine phosphorylation of numerous cellular proteins including ZO-1, E-cadherin, and beta-catenin, components of tight and adherens junctions, was observed. On the other hand, combined treatment of Caco-2 monolayers with H(2)O(2) and an NO donor (NOC5 or NOC12) relieved the damage to the barrier function and suppressed the protein tyrosine phosphorylation induced by H(2)O(2) alone. These results suggest that NO protects the barrier function of intestinal epithelia from oxidative stress by modulating some intracellular signaling pathways of protein tyrosine phosphorylation in epithelial cells.  相似文献   

12.
13.
Although the colonic cell line Caco-2 is widely used as a model of the small intestinal barrier function, it has limitations such as overestimated transepithelial electrical resistance (TEER) compared to in vivo conditions. Therefore, we investigated Human Intestinal Epithelial Cells (HIECs) as an alternative in vitro model.We explored whether cell seeding number of HIEC-6, and the number of incubation days for HIEC and Caco-2 cells had an impact on TEER, and tight junction expression was examined for both cell lines via immunofluorescence in the presence and absence of probiotic bacteria.We observed no significant difference in TEER readings for either cell lines when cultured for different days. Further, the HIEC TEER readings did not change with increased seeding number and were not significantly different from a control with no cells. HIECs expressed Claudin-1 and Zonula Occludens-1 but not Occludin. Caco-2 co-culture with probiotic bacteria demonstrated a significant increase in TEER, particularly for the lactobacillus strains, whereas HIEC TEER did not respond to bacterial co-incubation.Our study shows that although HIECs express certain TJ proteins, a significant TEER was not observed, likely due to the embryonic origin of the cells, which limits the application of this cell line as a suitable model for small intestinal barrier function.  相似文献   

14.
Clostridium perfringens delta-toxin is a β-barrel-pore-forming toxin (β-PFT) and a presumptive virulence factor of type B and C strains, which are causative organisms of fatal intestinal diseases in animals. We showed previously that delta-toxin causes cytotoxicity via necrosis in sensitive cells. Here, we examined the effect of delta-toxin on intestinal membrane integrity. Delta-toxin led to a reduction in transepithelial electrical resistance (TEER) and increased the permeability of fluorescence isothiocyanate-conjugated dextran in human intestinal epithelial Caco-2 cells without changing the tight junction proteins, such as zonula occludens-1 (ZO-1), occludin, and claudin-1. On the other hand, delta-toxin reduced the cellular levels of adherence junction protein E-cadherin before cell injury. A disintegrin and metalloprotease (ADAM) 10 facilitates E-cadherin cleavage and was identified as the cellular receptor for alpha-toxin, a β-PFT produced by Staphylococcus aureus. ADAM10 inhibitor (GI254023X) blocked the toxin-induced decrease in TEER and cleavage of E-cadherin. Delta-toxin enhanced ADAM10 activity in a dose- and time-dependent manner. Furthermore, delta-toxin colocalized with ADAM10. These results indicated that ADAM10 plays a key role in delta-toxin-induced intestinal injury.  相似文献   

15.
Our previous study has found that aureusidin can inhibit inflammation by targeting myeloid differentiation 2 (MD2) protein. Structural optimization of aureusidin gave rise to a derivative named CNQX. LPS was used to induce inflammation in intestinal macrophages; flow cytometry, PI staining and Hoechst 33342 staining were used to detect the apoptotic level of macrophages; enzyme-linked immunosorbent assay (ELISA) was utilized to detect the expression level of inflammatory factors (including IL-1β, IL-18 and TNF-α); immunofluorescence staining was used to investigate the expression of MD2; Western blot was employed to measure the protein level of TLR4, MD2, MyD88 and p-P65. As a result, CNQX with IC50 of 2.5 μM can significantly inhibit the inflammatory damage of macrophages, decrease apoptotic level, reduce the expression level of inflammatory factors and simultaneously decrease the expression level of TLR4, MD2, MyD88 as well as p-P65. Caco-2 cell line was used to simulate the intestinal mucosal barrier in vitro, LPS was employed to induce cell injury in Caco-2 (to up-regulate barrier permeability), and CNQX with IC50 of 2.5 μl was used for intervention. Flow cytometry was used to detect the apoptotic level of Caco-2 cells, trans-epithelial electric resistance (TEER) was measured, FITC-D was used to detect the permeability of the intestinal mucosa, and Western blot was used to detect the expression levels of tight junction proteins (including occludin, claudin-1, MyD88, TLR4 and MD2). As a result, CNQX decreased the apoptotic level of Caco-2 cells, increased TEER value, decreased the expression levels of MyD88, TLR4 and MD2, and increased the protein levels of tight junction proteins (including occludin and claudin-1). C57BL/6 wild-type mice were treated with drinking water containing Dextran sulphate sodium (DSS) to establish murine chronic colitis model. After CQNX intervention, we detected the bodyweight, DAI score and H&E tissue staining to evaluate the life status and pathological changes. Immunohistochemistry (IHC) staining was used to detect the expression of MD2 protein, tight junction protein (including occludin and claudin-1). Transmission electron microscopy and FITC-D were used to detect intestinal mucosal permeability. Western blot was used to detect the expression levels of tight junction proteins (including occludin, claudin-1, MyD88, TLR4 and MD2) in the intestinal mucosa tissue. Consequently, CNQX can inhibit the intestinal inflammatory response in mice with colitis, inhibit the mucosal barrier injury, increase the expression of tight junction proteins (including occludin and claudin-1) and decrease the expression levels of MyD88, TLR4 and MD2. Mechanistically, pull-down and immunoprecipitation assays showed that CNQX can inhibit the activation of TLR4/MD2-NF-κB by binding to MD2 protein. Collectively, in this study, we found that CNQX can suppress the activation of TLR4 signals by targeting MD2 protein, thereby inhibiting inflammation and mucosal barrier damage of chronic colitis.  相似文献   

16.
Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6–24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1.  相似文献   

17.
A new protein that decreases transepithelial electrical resistance (TEER) in the human intestinal Caco-2 cell monolayer was found in a water-soluble fraction of the mushroom Flammulina velutipes. This protein, termed TEER-decreasing protein (TDP), is not cytotoxic and does not induce cell detachment, but rapidly increases the tight junctional permeability for water-soluble marker substances such as Lucifer Yellow CH (Mr 457) through the paracellular pathway. TDP was isolated and purified from the aqueous extract of F. velutipes by chromatographic means. Purified TDP was found to be a simple, nonglycosylated protein without intermolecular disulfide bonds, and the apparent molecular mass as estimated by SDS/PAGE and gel filtration is 30 kDa. It was revealed that the N-terminal amino-acid sequence of purified TDP is identical to the recently reported N-terminal sequence of flammutoxin, a membrane-perturbing hemolytic protein, for which the complete primary structure has not yet been reported [Tomita, T., Ishikawa, D., Noguchi, T., Katayama, E., and Hashimoto, Y. (1998) Biochem. J. 333, 24794-24799]. The cDNA coding for TDP was cloned by 5' and 3' rapid amplification of cDNA ends. The ORF encodes a protein with 272 amino-acid residues showing no homology to known proteins. Relevant studies using TDP cDNA will provide insight into the structure-function relationships of membrane pore-forming toxins.  相似文献   

18.
Functional intestinal epithelium relies on complete polarization of enterocytes marked by the formation of microvilli and the accurate trafficking of glycoproteins to relevant membrane domains. Numerous transport pathways warrant the unique structural identity and protein/lipid composition of the brush border membrane. Annexin II (Ca(2+)-dependent lipid-binding protein) is an important component of one of the apical protein transport machineries, which involves detergent-resistant membranes and the actin cytoskeleton. Here, we investigate in intestinal Caco-2 cells the contribution of annexin II to the sorting and transport of brush border hydrolases and role in intestinal cell polarity. Downregulation of annexin II in Caco-2-A4 cell line results in a severe reduction of the levels of the brush border membrane resident enzyme sucrase isomaltase (SI) as well as structural components such as ezrin. This reduction is accompanied by a redistribution of these proteins to intracellular compartments and a striking morphological transition of Caco-2 cells to rudimentary epithelial cells that are characterized by an almost flat apical membrane with sparse and short microvilli. Concomitant with this alteration is the redistribution of the intermediate filament protein keratin 19 to the intracellular membranes in Caco-2-A4 cells. Interestingly, keratin 19 interacts with annexin II in wild type Caco-2 cells and this interaction occurs exclusively in lipid rafts. Our findings suggest a role for annexin II and K19 in differentiation and polarization of intestinal cells.  相似文献   

19.
The small intestinal epithelium is a highly dynamic system continuously renewed by a process involving cell proliferation and differentiation. The intestinal epithelium constitutes a permeability barrier regulating the vectorial transport of ions, water, and solutes. Morphological changes during cell differentiation, as well as changes in the activity of brush-border enzymes and the expression of transport proteins, are well established. However, little is known about the arachidonic acid (AA) cascade underlying epithelial cell differentiation or its role in the development of epithelial barrier function. The main purpose of this study was to examine the activity of the high-molecular-weight phospholipases A(2) (PLA(2)) and cyclooxygenase (COX) pathway during differentiation, with particular emphasis on paracellular permeability. PLA(2) activity, AA release, COX-2 expression, prostaglandin E(2) (PGE(2)) production, and paracellular permeability were studied in preconfluent, confluent, and differentiated Caco-2 cell cultures. Our results show that Caco-2 differentiation induces a decrease in both calcium-independent PLA(2) activity and COX-2 expression and, consequently, a decrease in AA release and PGE(2) synthesis in parallel with a reduction in paracellular permeability. Moreover, the addition of PGE(2) to differentiated cells, at concentrations similar to those detected in nondifferentiated cultures, induces the disruption of epithelial barrier function. These results suggest that AA release by calcium-independent PLA(2), COX-2 expression, and subsequent PGE(2) release are important for the maintenance of paracellular permeability in differentiated Caco-2 cells.  相似文献   

20.
An abnormal increase in intestinal paracellular permeability may be an important pathogenic factor in various intestinal diseases. The intracellular factors and processes that regulate and cause alteration of intestinal paracellular permeability are not well understood. The purpose of this study was to examine some of the intracellular processes involved in cytoskeletal regulation of intestinal epithelial paracellular permeability using the filter-grown Caco-2 intestinal epithelial monolayers. Cytochalasin-b and colchicine were used to disrupt the cytoskeletal elements, actin microfilaments, and microtubules. Cytochalasin-b (5 m?g/ml) and colchicine (2 × 10?5M) at the doses used caused marked depolymerization and disruption of actin microfilaments and microtubules, respectively. Cytochalasin-b-induced disruption of actin microfilaments resulted in perturbation of tight junctions and desmosomes and an increase in Caco-2 monolayer paracellular permeability. The cytochalasin-b-induced disruption of actin microfilaments and subsequent changes in intercellular junctional complexes and paracellular permeability were not affected by inhibitors of protein synthesis (actinomycin-D or cycloheximide) or microtubule function (colchicine), but were inhibited by metabolic energy inhibitors (2,4-dinitrophenol or sodium azide). The cytochalasin-b-induced disturbance in Caco-2 actin microfilaments and intercellular junctional complexes and increase in paracellular permeability were rapidly reversed. The paracellular pathway “re-tightening” following cytochalasin-b removal was not affected by actinomycin-D, cycloheximide, or colchicine, but was inhibited by 2,4-dinitrophenol and sodium azide. The colchicine-induced disruption of microtubules did not have significant effect on actin microfilaments, intercellular junctions, or paracellular permeability. These findings suggest that cytochalasin-b-induced increase in Caco-2 monolayer paracellular permeability was due to actin microfilament mediated perturbation of intercellular junctional complexes. The re-tightening of paracellular pathways (following removal of cytochalasin-b) resulted from energy-mediated re-assembly of pre-existing actin microfilaments and intercellular junctional complexes. This re-closure process did not require protein synthesis or microtubule-mediated shuttling process. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号