首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Large-scale identification of leaf senescence-associated genes   总被引:27,自引:0,他引:27  
Leaf senescence is a form of programmed cell death, and is believed to involve preferential expression of a specific set of "senescence-associated genes" (SAGs). To decipher the molecular mechanisms and the predicted complex network of regulatory pathways involved in the senescence program, we have carried out a large-scale gene identification study in a reference plant, Arabidopsis thaliana. Using suppression subtractive hybridization, we isolated approximately 800 cDNA clones representing SAGs expressed in senescing leaves. Differential expression was confirmed by Northern blot analysis for 130 non-redundant genes. Over 70 of the identified genes have not previously been shown to participate in the senescence process. SAG-encoded proteins are likely to participate in macromolecule degradation, detoxification of oxidative metabolites, induction of defense mechanisms, and signaling and regulatory events. Temporal expression profiles of selected genes displayed several distinct patterns, from expression at a very early stage, to the terminal phase of the senescence syndrome. Expression of some of the novel SAGs, in response to age, leaf detachment, darkness, and ethylene and cytokinin treatment was compared. The large repertoire of SAGs identified here provides global insights about regulatory, biochemical and cellular events occurring during leaf senescence.  相似文献   

2.
3.
4.
5.
6.
Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence.  相似文献   

7.
8.
The onset of leaf senescence is regulated by a complex mechanism involving positive and negative regulators. Among positive regulators, jasmonic acid (JA) accumulates in senescing leaves and the JA-insensitive coi1-1 mutant displays delayed leaf senescence in Arabidopsis. A strong activated expression of the gene coding for the JA-biosynthetic beta-oxidation enzyme 3-ketoacyl-CoA thiolase 2 (KAT2) in natural and dark-induced senescing leaves of Arabidopsis thaliana is reported here. By using KAT2::GUS and KAT2::LUC transgenic plants, it was observed that dark-induced KAT2 activation occurred both in excised leaves as well as in whole darkened plants. The KAT2 activation associated with dark-induced senescence occurred soon after a move to darkness, and it preceded the detection of symptoms and the expression of senescence-associated gene (SAG) markers. Transgenic plants with reduced expression of the KAT2 gene showed a significant delayed senescence both in natural and dark-induced processes. The rapid induction of the KAT2 gene in senescence-promoting conditions as well as the delayed senescence phenotype and the reduced SAG expression in KAT2 antisense transgenic plants, point to KAT2 as an essential component for the timely onset of leaf senescence in Arabidopsis.  相似文献   

9.
Jasmonates mediate various physiological events in plant cells such as defense responses, flowering, and senescence through intracellular and intercellular signaling pathways, and the expression of a large number of genes appears to be regulated by jasmonates. In order to obtain information on the regulatory network of jasmonate-responsive genes (JRGs) in Arabidopsis thaliana (Arabidopsis), we screened 2880 cDNA clones for jasmonate responsiveness by a cDNA macroarray procedure. Since many of the JRGs reported so far have been identified in leaf tissues, the cDNA clones used were chosen from a non-redundant EST library that was prepared from above-ground organs. Hybridization to the filters was achieved using alpha-33P-labeled single-strand DNAs synthesized from mRNAs obtained from methyl jasmonate (MeJA)-treated and untreated Arabidopsis seedlings. Data analysis identified 41 JRGs whose mRNA levels were changed by more than three fold in response to MeJA. This was confirmed by Northern blot analysis by using eight representatives. Among the 41 JRGs identified, 5 genes were JA biosynthesis genes and 3 genes were involved in other signaling pathways (ethylene, auxin, and salicylic acid). These results suggest the existence of a positive feedback regulatory system for JA biosynthesis and the possibility of crosstalk between JA signaling and other signaling pathways.  相似文献   

10.
11.
Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.  相似文献   

12.
13.
Abstract: Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. In order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.  相似文献   

14.
15.
16.
17.
18.
Microarray gene expression profiling was used to examine the role of pleiotropic COP/DET/FUS loci as well as other partially photomorphogenic loci during Arabidopsis seedling development and genome expression regulation. Four types of lethal, pleiotropic cop/det/fus mutants exhibit qualitatively similar gene expression profiles, yet each has specific differences. Mutations in COP1 and DET1 show the most similar genome expression profiles, while the mutations in the COP9 signalosome (CSN) and COP10 exhibit increasingly diverged genome expression profiles in both darkness and light. The genome expression profiles of the viable mutants of COP1 and DET1 in darkness mimic those of the physiological light-regulated genome expression profiles, whereas the genome expression profiles of representative lethal mutants belong to another clade and significantly diverge from the normal light control of genome expression. Instead, these lethal pleiotropic mutants show genome expression profiles similar to those from seedlings growth under high light intensity stress. Distinct lethal pleiotropic cop/det/fus mutants also result in distinct expression profiles in the small portion of genes examined and exhibit similar relatedness in both light and darkness. The partial cop/det/fus mutants affected expression of both light regulated and non-light regulated genes. Our results suggest that pleiotropic COP/DET/FUS loci control is largely overlapping but also has separable roles in plant development. The partially photomorphogenic loci regulate a subset of photomorphogenic responses as well as other non-light regulated processes.  相似文献   

19.
Chory J  Nagpal P  Peto CA 《The Plant cell》1991,3(5):445-459
The greening phenotypes produced by recessive mutations in a gene designated de-etiolated-2 (DET2) are described. Recessive mutations in the DET2 gene uncouple light signals from a number of light-dependent processes. det2 mutations result in dark-grown Arabidopsis thaliana seedlings with many characteristics of light-grown plants, including hypocotyl growth inhibition, cotyledon expansion, primary leaf initiation, anthocyanin accumulation, and derepression of light-regulated gene expression. In contrast to these morphological and gene expression changes, however, the chloroplast development program is not initiated in the dark in det2 mutants, suggesting that light-regulated gene expression precedes the differentiation of etioplasts to chloroplasts. det2 mutations thus reveal at least two classes of downstream light-regulated responses that differ in their timing and control mechanisms. Homozygous det2 mutations also affect photoperiodic responses in light-grown plants, including timing of flowering, dark adaptation of gene expression, and onset of leaf senescence. The phenotype of det1 det2 double mutants is additive, implying that DET1 and DET2 function in distinct pathways that affect downstream light-regulated genes. Furthermore, these pathways are not utilized solely during early seedling development but must also be required to regulate different aspects of the light developmental program during later stages of vegetative growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号