首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: Is a mosaic structure apparent in the spatial distribution of trees in old‐growth Abies amabilis forests? Location: Montane forests of the western Cascade Range, Washington, USA. Methods: Maps of tree locations were created for study areas located in two, 300‐year old stands and a single 600‐year old stand. Stand structure parameters were calculated using several subsample quadrats sizes (56.25 ‐ 306.25 m2), which were drawn randomly with replacement at a density of 250 quadrats per ha from the stem maps in the computing environment. Spatial cross‐covariance functions between different canopy strata were estimated using the spline cross‐correlogram. Results: Negative spatial correlation (segregation) between subcanopy tree density and areas of high overstorey occupancy was detected. Understorey and midstorey tree densities were positively spatially correlated. These general trends were apparent across the range of observational scales investigated. Significant spatial correlation between canopy strata was observed at spatial scales of 12 ‐ 44 m and extended to the largest scales in the 600‐year old stand. Conclusion: The observed spatial segregation between canopy strata supports the hypothesis that old A. amabilis forests form fine‐scale structural mosaics. Structural segregation at small scales may be due to competitive interactions as well as exogenous forcing of tree locations (e.g. by mortality due to pathogens or disturbance), however segregation at large scales in the 600‐year old stand is likely due to exogenous factors alone. This study reinforces the idea that horizontal heterogeneity is an emergent property of old‐growth forests.  相似文献   

2.
Abstract. We studied the characteristics of understorey regeneration on two sites with different fire history in a mature Pinus sylvestris forest in eastern Finland. The study area was a 4‐ha plot, which was divided into two parts based on fire history analysis. In one part the last fire event was a stand‐replacing fire in the early 19th century, after which the whole stand regenerated, while the other part of the study plot was subsequently burnt by a surface fire in 1906. Understorey P. sylvestris individuals were much more abundant in the area of the 1906 burn compared to the old burn. In both areas the size frequency distribution of living trees was bimodal, with frequency peaks at the < 5 cm and 30–150 cm height classes. In the old burn small understorey trees were mainly associated with microsites created by treefall disturbances while in the 1906 burn most small understorey trees occurred on vegetation‐covered microsites. This indicates that with increasing time since last fire establishment of new understorey trees becomes more restricted by the availability of microsites created by treefall disturbances. In both areas the proportion of vigorous small understorey trees was highest on decayed wood. In the older burn uprooted pits and mounds also had a significant proportion of healthy small understorey trees, while the majority of trees classified as seriously weakened or dying were growing on microhabitats characterized by undisturbed vegetation. Ripley's K‐function analyses showed that spatial distribution of understorey trees was clustered in both areas in all microsite types and clustering at small scales was most pronounced in understorey trees growing in uprooted spots or in association with decayed wood. The bivariate analysis showed a significant repulsion effect between large trees and understorey trees at intermediate spatial scales, indicating that competition had an effect on understorey tree distribution and this effect was more pronounced in the younger burn. The analysis suggests that in Pinus sylvestris forests the abundance, quality and spatial pattern of understorey tree population may vary considerably as a function of disturbance history.  相似文献   

3.
Question: The effect of overstorey composition on above‐ground dynamics of understorey vegetation is poorly understood. This study examines the understorey biomass, production and turnover rates of vascular and non‐vascular plants along a conifer–broadleaf gradient of resource availability and heterogeneity. Location: Canadian boreal forests of northwest Quebec and Ontario. Methods: We sampled mature stands containing various proportions of black spruce (Picea mariana (Mill.) BSP), trembling aspen (Populus tremuloides Michx.) and jack pine (Pinus banksiana Lamb.). Above‐ground biomass of the understorey vegetation was assessed through harvesting; annual growth rates were calculated as the differences between biomass in 2007 and 2008, as estimated by allometric relationships, and turnover rates were estimated as net primary production divided by the biomass in 2007. Results: Higher aspen presence, linked to greater nutrient availability in the forest floor, was generally associated with higher vascular biomass and production in the understorey. This effect was less pronounced in sites of high intrinsic fertility. In contrast, bryophyte biomass was positively associated with conifer abundance, particularly in wet sites of the Quebec study area. Non‐linear responses resulted in total understorey biomass being lower under mixed canopies than under pure aspen or pure conifer canopies. Turnover rates did not differ with overstorey composition. Conclusions: While resource availability is a main driver of understorey productivity, resources as drivers appear to differ with differences in understorey strata components, i.e. vascular versus non‐vascular plants. Resource heterogeneity induced by a mixed canopy had overall negative effects on understorey above‐ground productivity, as this productivity seemed to rely on species adapted to the specific conditions induced by a pure canopy.  相似文献   

4.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

5.
Abstract. Surface fuels were examined in 48 stands of the Canadian mixed‐wood boreal forest. Tree canopy was characterized with the point‐centred quadrant method and stands were characterized as deciduous, mixed‐deciduous, mixed‐coniferous or coniferous according to the percentage of conifer basal area. Woody debris loadings were measured with the line intersect method and the litter, duff, shrub loads and depths or heights were sampled with various quadrats. No significant difference was found among stand types for total woody debris load, large basal diameter shrub loads and load or depth of litter and duff. However, conifer stands had significantly heavier loads of small diameter elements (twigs and shrubs) and conifer pieces were more numerous within these stands than in deciduous stands. The BEHAVE prediction system was used to evaluate the impact of these differences on the potential of fire ignition in situations where topography and weather were constant. The qualitative and quantitative changes in fuels, resulting from species replacement and fast decay rates, influence fire hazard. Simulations of fire behaviour showed that in the mixed‐wood boreal forest fires were less intense and spread more slowly in deciduous stands than in mixed or coniferous stands. Moreover, spring fires were more intense than summer fires, and differences between seasons increased with the increase of deciduous basal area.  相似文献   

6.
Question: How does the composition and species richness of understorey vegetation associate with changing abundance of deciduous shrub canopies? What are the species‐specific associations between shrubs and understorey plants? Location: Tundra habitats along an over 1000‐km long range, spanning from NW Fennoscandia to the Yamal Peninsula in northwest Russia. Methods: The data from 758 vegetation sample plots from 12 sites comprised cover estimates of all plant species, including bryophytes and lichens, and canopy height of deciduous shrubs. The relationships between shrub volume and cover of plant groups and species richness of vegetation were investigated. In addition, species‐specific associations between understorey species and shrub volume were analysed. Results: Shrub abundance was shown to be associated with the composition of understorey vegetation, and the association patterns were consistent across the study sites. Increased forb cover was positively associated with shrub volume, whereas bryophyte, lichen, dwarf shrub and graminoid cover decreased in association with increasing volume of deciduous shrubs. The total species richness of vegetation declined with increasing shrub volume. Conclusions: The results suggest that an increase of shrubs – due to climatic warming or a decrease in grazing pressure – is likely to have strong effects on plant–plant interactions and lead to a decrease in the diversity of understorey vegetation.  相似文献   

7.
Vertical CO2 profiles (between 0.02 and 14.0 m) were studied in forest canopies of Pinus contorta, Populus tremuloides, and in a riparian forest with Acer negundo and Acer grandidentatum during two consecutive growing seasons. Profiles, measured continuously during 1- to 13-day periods in four to five stands differing in overstorey canopy area index (CAI < 4.5; including leaves, branches and stems), were well stratified, with highest [CO2] just above the forest floor. Canopy [CO2] profiles were influenced by stand structure (CAI, presence of understorey vegetation), and were highly dependent on vegetation type (deciduous and evergreen). A doubling of CAI in Acer spp. and P. tremuloides stands did not show an effect on upper canopy [CO2], when turbulent mixing was high. However, increasing understorey biomass in Acer spp. stands had a profound effect on lower canopy [CO2]. In open stands with a vigorous understorey layer, higher soil respiration rates were offset by increased understorey gas exchange, resulting in [CO2] below those of the convective boundary layer (CBL). Midday depletions up to 20 ppmv below CBL values could be frequently observed in deciduous canopies. In evergreen canopies, [CO2] stayed generally above the CBL background values, [CO2] profiles were more uniform, and gradients were smaller than in deciduous stands with similar CAI. Seasonal changes of canopy [CO2] reflected changes in soil respiration rates as well as plant phenology and gas exchange of both dominant tree and understorey vegetation. Seasonal patterns were less pronounced in evergreen than in deciduous forests.  相似文献   

8.
We report a multiscale study in the Wind River Valley in southwestern Washington, where we quantified leaf to stand scale variation in spectral reflectance for dominant species. Four remotely sensed structural measures, the normalized difference vegetation index (NDVI), cover fractions from spectral mixture analysis (SMA), equivalent water thickness (EWT), and albedo were investigated using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data. Discrimination of plant species varied with wavelength and scale, with deciduous species showing greater separability than conifers. Contrary to expectations, plant species were most distinct at the branch scale and least distinct at the stand scale. At the stand scale, broadleaf and conifer species were spectrally distinct, as were most conifer age classes. Intermediate separability occurred at the leaf scale. Reflectance decreased from leaf to stand scales except in the broadleaf species, which peaked in near-infrared reflectance at the branch scale. Important biochemical signatures became more pronounced spectrally progressing from leaf to stand scales. Recent regenerated clear-cuts (less than 10 years old) had the highest albedo and nonphotosynthetic vegetation (NPV). After 50 years, the stands showed significant decreases in albedo, NPV, and EWT and increases in shade. Albedo was lowest in old-growth forests. Peak EWT, a proxy measure for leaf area index (LAI), was observed in 11- to 30-year-old stands. When compared to LAI, EWT and NDVI showed exponentially decreasing, but distinctly different, relationships with increasing LAI. This difference is biologically important: at 95% of the maximum predicted NDVI and EWT, LAI was 5.17 and 9.08, respectively. Although these results confirm the stand structural variation expected with forest succession, remote-sensing images also provide a spatial context and establish a basis to evaluate variance within and between age classes. Landscape heterogeneity can thus be characterized over large areas—a critical and important step in scaling fluxes from stand-based towers to larger scales.  相似文献   

9.
Questions: What influence do management practices and previous tree and shrub stand structure have on the occurrence and development of natural regeneration of Pinus sylvestris in Mediterranean mountain forests? How are the fine‐scale and environmental patterns of resources affected and what impact does this have on the distribution of the regeneration? Location: A Pinus sylvestris Mediterranean mountain forest in central Spain. Methods: Upperstory trees and regeneration (seedlings and saplings) were mapped in four 0.5‐ha plots located in two types of stand with different management intensities (even‐aged and uneven‐aged stands). Environmental variables were recorded at the nodes of a grid within the plots. The relationships between the upperstory and regeneration were evaluated by bivariate point pattern analysis; redundancy analysis ordination and variation partitioning were performed to characterize regeneration niches and the importance of the spatial component. Results: Seedlings and saplings presented a clumped structure under both types of management and their distribution was found to be related to the spatial distribution of favourable microsites. Regeneration was positively related to conditions of partial cover with high soil water content during the summer. More than half of the explained variance was spatially structured in both types of stand. This percentage was particularly high in the even‐aged stands where the pattern of regeneration was highly influenced by the gaps created by harvesting. Conclusions: The spatial distribution of the tree and shrub upperstory strongly influences regeneration patterns of P. sylvestris. Current management practices, promoting small gaps, partial canopy cover and moderate shade in even‐aged stands, or favouring tree and shrub cover in the case of uneven‐aged stands, appears to provide suitable conditions for the natural regeneration of P. sylvestris in a Mediterranean climate.  相似文献   

10.
Abstract. Compositional variation among 172 boreal forests stands, based upon the understorey terricolous bryophyte and macrolichen vegetation, is compared with that based upon vascular vegetation. Detrended correspondence analysis (DCA) of the two datasets yielded stand ordinations each indicating a single dominant upland-bottomland gradient. This was most clear among 138 stands in the cryptogam dataset. Canonical correspondence analysis (CCA) of the 138 stand subset yielded a pronounced first axis gradient from dry, nutrient poor pine dominated forest sites to moist, nutrient rich bottomland sites dominated by balsam poplar woodland. Individual species response curves, by the method of log-linear least squares regression, yielded three different respective patterns among the most abundant tree, understorey vascular and cryptogamic plant species. Whereas curves for the tree species were ‘Gaussian’ in shape and displaced at somewhat regular intervals along the gradient, the abundant understorey vascular plant species curves clustered in the mesic, mixed wood region two thirds of the way along. Curves for the abundant cryptogams were mostly linear in shape and absent from the mixed wood zone, showing concentrations at one end of the gradient or the other. Two interpretations of the understorey pattern are considered. One proposes competitive exclusion of cryptogams from the mesic mixed wood region by the vascular understorey plants. Another proposes that the cryptogams are adapted to the sharply contrasting ecosystems encountered at one end of the gradient or another but that none can effectively cope with the intermediate, mixed wood ecosystems. Evidence from the response curves favours this second interpretation.  相似文献   

11.
Airborne laser scanning (ALS) has the potential to capture a range vegetation structural metrics, but most studies have focussed on conifer or mixed conifer‐deciduous cool‐temperate or boreal forests. This study focuses on a warm‐temperate eucalypt forest, where two epochs of ALS data, captured approximately 2 years apart, were compared with plot and transect field data collected after the second ALS epoch. Linear regression was used to compare metrics from field and ALS data, and Student's t‐tests were used to compare metrics from the two ALS epochs. Statistically significant relationships were found for tree height (R2 = 0.915; SE = 2.08 m; P < 0.01) and canopy cover (R2 = 0.508; SE = 16.4%; P < 0.01). Foliage projective cover was also significantly correlated (R2 = 0.916; SE = 4.5%; P < 0.01) at a 10‐m stratification, but not at the typically computed 2‐m stratification, because of the presence of a tall scrubby understorey. Statistically significant values were also obtained from ALS data captured 2 years earlier, although correlation was not as strong, most likely because of the greater interval between fieldwork and ALS capture. Importantly, significant agreement was found for all metrics when the two ALS epochs were compared, suggesting that the metrics are robust.  相似文献   

12.
Questions : How do gap abundance and the spatial pattern of trees and snags change throughout stand development in Picea mariana forests? Does spatial pattern differ among site types and structural components of a forest? Location : Boreal forests dominated by Picea mariana, northern Quebec and Ontario, Canada. Methods : Data on the abundance, characteristics and spatial location of trees, snags and gaps were collected along 200 m transects at 91 sites along a chronosequence. Spatial analyses included 3TLQV, NLV and autocorrelation analysis. Non‐parametric analyses were used to analyse trends with time and differences among structural components and site types. Results : Gaps became more abundant, numerous and more evenly distributed with time. At distances of 1–4 m, tree cover, sapling density and snag density became more heterogeneous with time. Tree cover appeared to be more uniform for the 10–33 m interval, although this was not significant. Patch size and variance at 1 m were greater for overstorey than for understorey tree cover. Snags were less spatially variable than trees at 1 m, but more so at intermediate distances (4–8 m). Few significant differences were found among site types. Conclusions : During stand development in P. mariana forest, gaps formed by tree mortality are filled in slowly due to poor regeneration and growth, leading to greater gap abundance and clumping of trees and snags at fine scales. At broader scales, patchy regeneration is followed by homogenization of forest stands as trees become smaller with low productivity due to paludification.  相似文献   

13.
Abstract. This study deals with stand dynamics over a 6‐yr period in a conifer/broad‐leaved mixed forest in Hokkaido, northern Japan. The annual rates of gap formation and recovery were 81.3 m2/ha and 66.7 m2/ha, respectively and turnover time of the canopy was 125 yr. The recruitment processes of the component species in this cool‐temperate forest were governed by different canopy types: gap, canopy edge and closed canopy. Magnolia obovata regenerated in canopy edges, and Acer mono and Prunus ssiori regenerated in canopy edges and gaps. The results suggested that the mosaic structure made up of closed canopy, canopy edge and gap was related to various regeneration niches. Abies sachalinensis had high mortality rates, initiating gap expansion. The transition probabilities from closed canopy or canopy edge to gap for deciduous broad‐leaved trees were lower than for A. sachalinensis, which implies that the difference in degeneration patterns of conifer and broad‐leaved canopies contributes to the heterogeneity of spatial structure in the mixed forests. Spatial dynamics were determined by a combination of gap expansion by A. sachalinensis (neighbour‐dependent disturbance) and gap formation by deciduous broad‐leaved trees (random disturbance).  相似文献   

14.
Abstract. Sirén (1955) studied understorey species composition, tree stand properties and humus‐layer thickness in 64 unlogged forest stands on topographically and pedologically comparable sites. The stands were of even age (6 – 300 yr), stocked with the first or second tree generation after wildfire. The view of Sirén and several authors after him, that the vegetation of old‐growth boreal Picea forests is homogeneous on a broad scale, was examined by applying, in parallel, the partial variants of two ordination methods (DCA and PCA) to Sirén's vegetation data. Two main vegetation gradients were found: a major gradient running from recently burnt plots with prominence of pioneer species to plots with stand age > 100 yr, a well stocked tree layer and a thick humus layer, dominance of feather‐mosses and ample occurrence of shade‐tolerant as well as light‐preferring vascular plant species, and a second gradient along which first‐ and second‐generation plots segregate. The more prominent element of Betula trees in first‐ than in second‐generation stands < 100 yr contributed to the latter. A minor third gradient related to humus‐layer thickness was recovered by partial DCA only. The main vegetation gradient reappeared in separate ordinations of data from 47 mature forest stands (> 100 yr), but without being correlated with forest age. Variation among mature‐forest stands in the importance of pioneer species is considered mainly to be brought about by fine‐scale disturbance processes such as tree uprooting. Increasing importance of factors operating on within‐stand scales [development of a varied gap structure and stronger gradients in tree influence (radiation at ground level), soil moisture, soil depth and nutrient availability] with time is also reflected in the second and third mature‐forest ordination axes. Possible implications of the results for conservation of biological diversity and monitoring of changes in boreal forests are discussed.  相似文献   

15.
Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long‐term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4‐grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3‐grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4–7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N‐fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire‐resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light‐demanding grasses and forbs.  相似文献   

16.
Eighteen black spruce (Picea mariana) stands, representing postfire ages of 26 to 120 yr, were surveyed for understorey vegetation and site/microsite characteristics at two spatial scales. This enabled comparison of within- versus among-stand compositional variation.Detrended correspondence analysis (DCA) ordination among the 18 stands revealed a complex age/moisture gradient. DCA ordination among 1 800 quadrats within the stands indicated a similar gradient with much compositional overlap. Quadrats were grouped, using two-way indicator species analysis (TWINSPAN), into 9 classes each representing a phase in understorey vegetation composition. These phases shifted in abundance from young to old stands with a high degree of concordance among replicates in the same age class. Understorey succession is strongly linked to the stages in tree growth, mortality and thinning coupled with the accumulation of site moisture.Abbreviations DCA Detrended Corrospondence Analysis  相似文献   

17.
Questions: How does woody vegetation abundance and diversity differ after natural disturbances causing different levels of mortality? Location: Abies balsamea–Betula papyrifera boreal mixed‐wood stands of southeast Quebec, Canada. Methods: Woody vegetation abundance and diversity were quantified and compared among three disturbance‐caused mortality classes, canopy gap, moderate‐severity disturbances, and catastrophic fire, using redundancy analysis, a constrained linear ordination technique, and diversity indices. Results: Substantial changes in canopy tree species abundance and diversity only occurred after catastrophic fire. Shade‐tolerant, late‐successional conifer species remained dominant after canopy gap and moderate‐severity disturbances, whereas shade‐intolerant, early‐successional colonizers dominated canopy tree regeneration after catastrophic fire. Density and diversity of mid‐tolerant and shade‐intolerant understory tree and shrub species increased as the impact of disturbance increased. Highest species richness estimates were observed after catastrophic fire, with several species establishing exclusively under these conditions. Relative abundance of canopy tree regeneration was most similar after canopy gap and moderate‐severity disturbances. For the sub‐canopy tree and shrub community, relative species abundances were most similar after moderate‐severity disturbances and catastrophic fire. Vegetation responses to moderate‐severity disturbances thus had commonalities with both extremes of the disturbance‐caused mortality gradient, but for different regeneration layers. Conclusions: Current spatio‐temporal parameters of natural disturbances causing varying degrees of mortality promote the development of a complex, multi‐cohort forest condition throughout the landscape. The projected increase in time intervals between catastrophic fires may lead to reduced diversity within the system.  相似文献   

18.
Question: Does the increase in Populus tremuloides cover within the Picea mariana–feathermoss domain enhance establishment and growth conditions for Abies balsamea regeneration? Location: Boreal forest of northwest Quebec, Canada. Method: To document the effect of Populus tremuloides on A. balsamea regeneration, mixed stands with a heterogeneous presence of P. tremuloides adjacent to Picea mariana‐dominated stands were selected. Abies balsamea regeneration, understorey environment and canopy composition were characterized from 531 sampling units distributed along transects covering the mixed–coniferous gradient. Abundance of understorey A. balsamea regeneration was described using three height groups: seedling (<30 cm), small sapling (30 to <100 cm) and tall sapling (100 to 300 cm). Growth characteristics were measured from 251 selected individuals of A. balsamea (<3 m). Results: Results showed that A. balsamea regeneration was generally more abundant when P. tremuloides was present in the canopy. Differences between seedling and sapling abundance along the mixed–coniferous gradient suggest that while establishment probably occurs over a wide range of substrates, the better growth conditions found under mixed stands ensure a higher survival rate for A. balsamea seedlings. Conclusions: The abundant A. balsamea regeneration observed within mixed stands of the Picea mariana–feathermoss domain suggests that the increase in P. tremuloides cover, favoured by intensive management practices and climatic change, could contribute to acceleration of the northward expansion of the A. balsamea–Betula papyrifera domain into the northern boreal forest dominated by Picea mariana.  相似文献   

19.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

20.
Studying patterns of species invasions over time at multiple spatial scales may help us to elucidate important factors driving those patterns and how they change according to temporal or spatial resolution. Here we provide a large, long‐term, landscape‐scale study of the invasion of three Hieracium species using a dataset that encompasses vegetation change on 124 transects over 25 years across the lower eastern South Island of New Zealand. We investigated the relationships between key environmental and ecological factors and the invasion trajectories of H. lepidulum, H. pilosella and H. praealtum, at two spatial scales: (i) among‐transect colonization and (ii) within‐transect changes in frequency and per cent cover. Our results show that the colonization and spread of Hieracium species among and within transects reflect (i) the importance of initial environmental and biological conditions, (ii) that our sampling captured different periods of the invasion trajectories of each of the three species, and (iii) the effects of differences in life histories of the three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号