首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
  总被引:1,自引:0,他引:1  
Five highly polymorphic (GA)n microsatellite loci are reported for the formicine ant Camponotus consobrinus. The occurrence of many nests with a simple family structure enabled a search for new mutations, 11 of which were found from 3055 informative typings. These mutations were not randomly distributed across loci, 10 of them occurring at the locus Ccon70. The spectrum of mutations across alleles at Ccon70 was also nonrandom, with all of them occurring in alleles in the upper half of the allele size distribution. Six of the Ccon70 mutations decreased allele size. The mutations observed fit the stepwise mutation model well, i.e. mutations could always be assigned to an allele which differed in size from them by one repeat unit. The parental origins of the Ccon70 mutations were established and appear more female biased than vertebrate mutations, significantly so compared with human haemophilia A and primate intron mutations. This result may indicate that the lack of meiosis in males (which are haploid in ants) reduces the mutation rate in that sex relative to species in which both sexes are diploid.  相似文献   

3.
  总被引:1,自引:0,他引:1  
In order to characterize the sociogenetic structure of colonies in the carpenter ants Camponotus herculeanus and C. ligniperda, we have developed microsatellite markers. The three loci studied were either fixed for different alleles in the two species or showed different patterns of polymorphisms. Genotyping of workers and males showed that the broods of C. ligniperda include several matrilines, a rare phenomenon in the genus. Five alleles from a locus polymorphic in both species were sequenced from the respective PCR-products. A part of the length variation appeared to be due to changes outside the repeat sequence, and some PCR products of an equal length had a different number of dinucleotide repeats.  相似文献   

4.
    
A variety of arthropods, particularly insects, have developed myrmecophilous interactions with ants to gain access to resources and/or for protection. Among these myrmecophiles, only a few examples have been documented in the Coccinellidae, most of them involving species able to feed on ant-tended Hemiptera. We report here a new case of obligate myrmecophily in the coccinellid Diomus thoracicus. Larvae are invariably and exclusively found in the nests of the ant Wasmannia auropunctata and seem to rely on ant brood as their only food source. Not only do ant workers show no aggressiveness toward the D. thoracicus larvae in their behavioral interactions at the colonial level, but also at the species level; while coccinellid adults are always attacked. The integration of the larvae inside of the ant nests is based on their chemical mimicry of the host's cuticular cues. Therefore, given the presence of the D. thoracicus larvae inside of the ant's nest, their predation on Wasmannia brood and their chemical mimicry, this species can be considered a specific parasite of W. auropunctata. Overall, this new case of myrmecophily not only specifically involves a highly invasive ant species, but also provides insights into the evolution of myrmecophily and myrmecophagy in coccinellids.  相似文献   

5.
In social insects, interactions among individuals are important in colony organisation because they can be used in decision making. During trophallaxis in ants, antennal and foreleg contacts between both partners are established. It has been suggested that a modulatory communication channel could be involved in such contacts, but it remains undemonstrated. The aim of this work was to find variables plausible to be encoded in such contacts and quantify the consequent changes in the tactile stimulation the food-donor ant receives. We recorded nectar transference between pairs of workers in experimental arenas once one of them had returned from collecting sucrose solution (15 or 40%w/w), with different situations of colony’s sugar deprivation. The frequency of antennal strokes that the food-donor ant received on her head depended on both the colony’s sugar-deprivation and the concentration, the latter showed differences within 3–5 deprivation days. Antennal and foreleg movements of the food-receiver increase with increasing level of colony’s carbohydrate deprivation, as well as with increasing concentration of the transferred food. Not only does this study reopen an interesting question, but it gives evidence that variables related to the appetitive context are indeed encoded in the tactile stimulation during the trophallaxis as well. Consequently, they have the effective potentiality to play a communicational role in the organization of colony activities. Received 22 December 2005; revised 5 April 2006; accepted 12 April 2006.  相似文献   

6.
Summary The Southeast Asian antTetraponera sp. nearattenuata F. Smith inhabits internodes of large bamboo species that it shares with symbiotic pseudococcids. It finds access to this nesting habitat via small holes made by wood-boring insects. During heavy rain, runoff water collects in these punctured internodes. TheTetraponera workers remove the water by ingesting it, walking to the entrance hole, and regurgitating it to the outside. In this way, they 1) reduce the danger of colony members drowing, 2) enable their symbionts to feed also on the internode floor, and 3) prevent excessive growth of microbes in the nest.  相似文献   

7.
    
The pace and trajectory of coevolutionary arms races between parasites and their hosts are strongly influenced by the number of interacting species. In environments where a parasite has access to more than one host species, the parasite population may become divided in preference for a particular host. In the present study, we show that individual colonies of the pirate ant Polyergus breviceps differ in host preference during raiding, with each colony specializing on only one of two available Formica host species. Moreover, through genetic analyses, we show that the two hosts differ in their colony genetic structure. Formica occulta colonies were monogynous, whereas Formica  sp. cf. argentea colonies were polygynous and polydomous (colonies occupy multiple nest sites). This difference has important implications for coevolutionary dynamics in this system because raids against individual nests of polydomous colonies have less impact on overall host colony fitness than do attacks on intact colonies. We also used primers that we designed for four microsatellite loci isolated from P. breviceps to verify that colonies of this species, like other pirate ants, are comprised of simple families headed by one singly mated queen.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 565–572.  相似文献   

8.
    
In some leaf‐cutting ant species, minim workers ride on the fragments of leaves as they are carried back to the nest from the cutting site. There is convincing evidence that these “hitchhikers” can protect the leaf carriers from attack by phorid (Diptera: Phoridae) parasitoids, but we consider the possibility of other functions for the hitchhiking behavior. It has been hypothesized that the hitchhikers (1) feed on leaf sap from the edges of the cut leaves; (2) ride back to the nest to save energy; (3) get caught on the fragments as they are cut, and hitchhike because they cannot (or will not) get off; and (4) begin the process of preparing the leaf to enter the fungal gardens in the nest, perhaps by removing microbial contaminants. We observed hitchhikers of Atta cephalotes in 14 nests at the La Selva Biological Station in Costa Rica. There was no difference in the proportion of leaf carriers with hitchhikers between day and night. Because the nests we observed were largely nocturnal, more than 90 percent of the hitchhiking occurred at night. The phorid parasitoids are usually considered to be diurnal, so the preponderance of nocturnal hitchhiking suggests other functions in addition to parasitoid defense. Hitchhikers spent more time in the defensive head‐up posture during the day, but spent more time in the head‐down posture at night. The head‐down posture may indicate cleaning or other leaf preparation. The hitchhikers were never observed feeding on sap. Hitchhikers frequently got onto and off of the fragments, and so they were not “marooned.” Few hitchhikers rode all the way back to the nest and were often moving on the leaf fragment; these observations make the energy conservation hypothesis less likely, although we cannot reject it. We conclude that parasitoid defense is an important function of hitchhiking but also that there are probably other functions when parasitoids are absent. Based on available data, the most likely possibility is preparation of the leaf fragment before it enters the nest.  相似文献   

9.
    
Exoskeletons characterise Arthropoda and have allowed the morphological and taxonomic diversity of the phylum. Exoskeletal sclerotisation occurs in genetically designated regions, and mandibles represent one such area of high sclerotisation. Mandible morphology reflects dietary preferences and niche partitioning and has therefore been well documented. However, mandibular cuticular microstructure has been under-documented. Here we use scanning electron microscopy to explore mandible microstructure in four disparate Australian Formicidae taxa (ants) with different life modes and diets: Camponotus nigriceps, Iridomyrmex purpureus, Odontomachus simillimus and Rhytidoponera aciculata. We test the hypothesis that mandible construction is highly conserved across these species, as would be expected for arthropod cuticle. We show broadly similar mandible microstructure but report that pore canals and cuticular indentations are not ubiquitous among all studied taxa. Our preliminary results demonstrate that ant taxa have morphologically plastic mandibles with a highly conserved construction, potentially reflecting an interesting record of evolutionary stasis.  相似文献   

10.
Abstract Cold hardiness was investigated in overwintering field nests of the black carpenter ant Camponotus pennsylvanicus (De Geer) in the Commonwealth of Virginia. No active nest thermoregulation was observed: temperatures of galleries, worker bodies, worker clusters, and larval clusters were within 3°C of ambient temperature. Nest temperatures generally fluctuated less rapidly and severely than did ambient temperature; thus, the nest afforded protection from potentially fatal sudden temperature drops. Glycerol, the only polyol cryoprotectant detected, was found in all castes and larvae. Supercooling points were low and ranged from ? 17°C in major workers to ?22°C in larvae. A second heat release peak, occurring around ? 8°C, was seen in all adults, but it was not observed in larvae. This higher temperature peak in adults probably represents the freezing of the gut contents, as adults were found to overwinter with the crop full or partially full. Larvae did not overwinter with liquid food in the gut.  相似文献   

11.
Parasites represent a severe threat to social insects, which form high-density colonies of related individuals, and selection should favour host traits that reduce infection risk. Here, using a carpenter ant (Camponotus aethiops) and a generalist insect pathogenic fungus (Metarhizium brunneum), we show that infected ants radically change their behaviour over time to reduce the risk of colony infection. Infected individuals (i) performed less social interactions than their uninfected counterparts, (ii) did not interact with brood anymore and (iii) spent most of their time outside the nest from day 3 post-infection until death. Furthermore, infected ants displayed an increased aggressiveness towards non-nestmates. Finally, infected ants did not alter their cuticular chemical profile, suggesting that infected individuals do not signal their physiological status to nestmates. Our results provide evidence for the evolution of unsociability following pathogen infection in a social animal and suggest an important role of inclusive fitness in driving such evolution.  相似文献   

12.
13.
    
In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and theory predicts that their associations are best described in terms of a highly antagonistic coevolutionary arms race.  相似文献   

14.
Co-evolutionary trajectories of host-parasite interactions are strongly affected by the antagonists' evolutionary potential, which in turn depends on population sizes as well as levels of recombination, mutation, and gene flow. Under similar selection pressures, the opponent with the higher evolutionary rate is expected to lead the co-evolutionary arms race and to develop local adaptations. Here, we use mitochondrial DNA sequence data and microsatellite markers to assess the amount of genetic variability and levels of gene flow in two host-parasite systems, each consisting of an ant social parasite--the European slavemaker Harpagoxenus sublaevis and the North American slavemaker Protomognathus americanus--and its two main host species. Our population genetic analyses revealed limited gene flow between individual populations of both host and parasite species, allowing for a geographic mosaic of co-evolution. In a between-system comparison, we found less genetic variability and more pronounced structure in Europe, where previous behavioural studies demonstrated strong local adaptation. Within the European host-parasite system, the larger host species Leptothorax acervorum exhibited higher levels of both genetic variability and gene flow, and previous field data showed that it is less affected by the social parasite H. sublaevis than the smaller host Leptothorax muscorum, which has genetically depleted and isolated populations. In North America, the parasite P. americanus showed higher levels of gene flow between sites, but overall less genetic diversity than its hyper-variable main host species, Temnothorax longispinosus. Interestingly, recent ecological and chemical studies demonstrated adaptation of P. americanus to local host populations, indicating the importance of migration in co-evolutionary interactions.  相似文献   

15.
  总被引:7,自引:0,他引:7  
Abstract.  1. The simultaneous occupation of a rare understorey ant-acacia Acacia mayana by its guarding ant Pseudomyrmex ferrugineus , and an apparent opportunist parasite of the mutualism, the generalist ant Camponotus planatus is described. The two ant species occur together in 30.7% of the 26 mature A. mayana plants [23.5% of all trees ( n  = 34)] surveyed, but C. planatus is absent from saplings below 1 m in height ( n  = 8).
2. While P. ferrugineus shows behaviour compatible with effective host-tree defence, C. planatus does not attack phytophagous insects and appears ineffective as an ant-guard. Camponotus planatus does, however, occupy swollen thorns (pseudogalls) on the host tree, and harvests nectar from extrafloral leaf nectaries. It is proposed that C. planatus is a parasite of the Acacia–Pseudomyrmex mutualism.
3. Camponotus planatus does not harvest the second trophic reward produced by the tree for its Pseudomyrmex ant-guards, protein-rich food (Beltian) bodies. Camponotus planatus lack the specialised larval adaptations needed to use Beltian bodies as brood food, suggesting that this resource is potentially more resistant to exploitation by generalists than extrafloral nectar.
4. In competition for access to nectaries, C. planatus effectively displaced P. ferrugineus in 99.8% of encounters. These results suggest not only that C. planatus is a parasite of this mutualism, but also that it is able to effectively counteract the aggression shown to other insects by the resident ant-guards.  相似文献   

16.
The respiratory physiology and water relations of three harvester ant species (Pogonomyrmex rugosus Emery, P. occidentalis[Cresson] and P. californicus[Buckley]) were examined at three temperatures (15, 25 and 35°C) using a flow-through respirometry system. As intact ants tended to be active during testing, we performed a parallel set of experiments on individuals rendered motionless by decapitation. Both intact and decapitated ants exhibited discontinuous ventilation. Decapitation caused metabolic rate (V˙CO2) and burst frequency to decrease in all three species. Burst volume either remained constant or increased after removal of the head, though mass-specific V˙CO2 was unaffected except in P. rugosus. Mass-specific V˙CO2s of headless harvesters were comparable with published values derived from motionless specimens of other ant species. The mean Q10 for intact ants of all three species was 2.37; for decapitated insects the mean was 2.32. Respiratory water constituted a small (< 5%) fraction of total loss, and we believe that discontinuous ventilation does not act to conserve water in these organisms, although it may serve other functions.  相似文献   

17.
Parasitic and infectious diseases (PIDs) are a significant threat to human, livestock, and wildlife health and are changing dramatically in the face of human-induced environmental changes such as those in climate and land use. In this article we explore the little-studied but potentially important response of PIDs to another major environmental change, that in the global nutrient cycles. Humans have now altered the nitrogen (N) cycle to an astonishing degree, and those changes are causing a remarkable diversity of environmental and ecological responses. Since most PIDs are strongly regulated by ecological interactions, changes in nutrients are likely to affect their dynamics in a diversity of environments. We show that while direct tests of the links between nutrients and disease are rare, there is mounting evidence that higher nutrient levels frequently lead to an increased risk of disease. This trend occurs across multiple pathogen types, including helminths, insect-vectored diseases, myxozoa, and bacterial and fungal diseases. The mechanistic responses to increased nutrients are often complex and frequently involve indirect responses that are regulated by intermediate or vector hosts involved in disease transmission. We also show that rapid changes in the N cycle of tropical regions combined with the high diversity of human PIDs in these regions will markedly increase the potential for N to alter the dynamics of disease. Finally, we stress that progress on understanding the effects of nutrients on disease ecology requires a sustained effort to conduct manipulative experiments that can reveal underlying mechanisms on a species-specific basis.  相似文献   

18.
    
Population dynamics is a branch of ecology that studies temporal changes in the abundance of a population of organisms over time. This paper presents a study of the factors influencing population abundance of the acanthocephalan Neoechinorhynchus brentnickoli in Dormitator latifrons, the Pacific fat sleeper, from Tres Palos Lagoon. Fish were sampled from February 2012 to February 2013. A total of 688 adult fish were examined. The mean total length of fish varied significantly from 16.10 ± 1.93 cm (September 2012) to 20.78 ± 3.82 cm (August 2012). ‘Prevalence of acanthocephalans exceeded 90% in all months, and mature individuals were present year round, indicating that recruitment of helminths occurred throughout the year. Mean abundance ranged from 32.3 (July 2012) to 89.3 helminths per fish (March 2012) and was significantly lower in the rainy season. The body size of fish was the best predictor of acanthocephalan abundance in every month; larger fish harbored more acanthocephalans than smaller ones. Although parasite loads were high in some months (up to 500 acanthocephalans in one fish), obvious damage to the health of fish was not evident.  相似文献   

19.
The phenotypic plasticity of plants has been explored as a function of either ontogeny (apparent plasticity) or environment (adaptive plasticity), although few studies have analyzed these factors together. In the present study, we take advantage of the dispersal of Aechmea mertensii bromeliads by Camponotus femoratus or Pachycondyla goeldii ants in shaded and sunny environments, respectively, to quantify ontogenetic changes in morphological, foliar, and functional traits, and to analyze ontogenetic and ant species effects on 14 traits. Most of the morphological (plant height, number of leaves), foliar (leaf thickness, leaf mass area, total water content, trichome density), and functional (leaf δ13C) traits differed as a function of ontogeny. Conversely, only leaf δ15N showed an adaptive phenotypic plasticity. On the other hand, plant width, tank width, longest leaf length, stomatal density, and leaf C concentration showed an adaptation to local environment with ontogeny. The exception was leaf N concentration, which showed no trend at all. Aechmea mertensii did not show an abrupt morphological modification such as in heteroblastic bromeliads, although it was characterized by strong, size‐related functional modifications for CO2 acquisition. The adaptive phenotypic variation found between the two ant species indicates the spatially conditioned plasticity of A. mertensii in the context of insect‐assisted dispersal. However, ant‐mediated effects on phenotypic plasticity in A. mertensii are not obvious because ant species and light environment are confounding variables. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 299–312.  相似文献   

20.
    
How can antiparasite defence traits evolve even if they do not directly benefit their carriers? An example of such an indirect defence is rebellion of enslaved Temnothorax longispinosus ant workers against their social parasite Temnothorax americanus, a slavemaking ant. Ant slaves have been observed to kill their oppressors' offspring, a behaviour from which the sterile slaves cannot profit directly. Parasite brood killing could, however, reduce raiding pressure on related host colonies nearby. We analyse with extensive computer simulations for the Temnothorax slavemaker system under what conditions a hypothetical rebel allele could invade a host population, and in particular, how host–parasite dynamics and population structure influence the rebel allele's success. Exploring a wide range of model parameters, we only found a small number of parameter combinations for which kin selection or multilevel selection could allow a slave rebellion allele to spread in the host population. Furthermore, we did not detect any cases in which the reduction of raiding pressure in the close vicinity of the slavemaker nest would substantially contribute to the inclusive fitness of rebels. This suggests that slave rebellion is not costly and perhaps a side‐effect of some other beneficial trait. In some of our simulations, however, even a costly rebellion allele could spread in the population. This was possible when host–parasite interactions led to a metapopulation dynamic with frequent local extinctions and recolonizations of demes by the offspring of few immigrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号