首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous ant taxa naturally inhabit stems of live and dead Guadua bamboo (Bambusoidea, Poaceae) in western Amazonia. In an experiment at the onset of the wet season in Peru’s Manu National Park, we augmented potential nest sites in stems of live bamboo, dead bamboo and dead ca?a brava (Gynerium sagittatum, another woody grass) at five stations within each of ten bamboo patches and ten control areas outside those patches. Each experimental stem possessed three vacant and available internodes, pre-drilled with, respectively, large, small and linear holes, mimicking the range of forms of surveyed natural entrances. After 24 days, approximately 13% of 798 available internodes had been colonized, the majority by fragments of existing colonies. Ignoring entrance type, which did not affect colonization for any species or species group, and censoring non-independent internodes of the same stem, we used individual stems as independent sample units in other tests. One specialist in live bamboo (Camponotus longipilis), and a likely specialist in dead bamboo (Camponotus depressus), were identified based on overrepresentation in bamboo habitat and disproportionate occurrence in live or dead bamboo stems. A third species, Camponotus (Pseudocolobopsis sp.) was more abundant in bamboo areas but colonized both dead bamboo and dead ca?a. Relatively high abundance of standing dead stems in Guadua forests may account for the presence of a dead stem specialist. The experiment missed detecting specialization in one live culm specialist (Camponotus mirabilis), likely due to its failure to simulate conditions required for the species’ unique modes of colony establishment and spread into new culms. Most opportunistic stem nesters colonized dead bamboo at significantly greater rates than dead ca?a, but were either equally well represented in bamboo and control areas, or underrepresented in bamboo habitat. Given low colonization rates overall, underrepresentation in bamboo cannot be attributed to competition from bamboo specialists for nesting space. Rather, it may be due to combined effects of seasonal flooding of bamboo habitat, and greater importance of food limitation, relative to nest site limitation, in that habitat. Received 9 May 2005; revised 25 August 2005; accepted 29 August 2005.  相似文献   

2.
1. Ant–plant mutualisms are among the most widespread and ecologically important insect–plant interactions in the tropics. The multitrophic mutualism involving Macaranga plants (Euphorbiaceae) and Crematogaster ants (Formicidae) is the most diverse in Southeast Asia. This interaction also includes trophobiotic scale insects (Coccidae) and nematodes inhabiting ant refuse piles. 2. Here two myrmecophytic systems were compared, Macaranga trachyphylla with Crematogaster captiosa (Mt + Cc) and Macaranga beccariana with Crematogaster decamera (Mb + Cd), using a fine‐scale dissection of the stems. For the two plant species, for each internode, both contents (ants, coccids, refuse piles) and structure (internode height, numbers of open and occluded ant holes) were recorded. 3. There were significant patterns in the vertical distribution of ant colonies and their symbionts in the plant stems. Most coccids were kept in the highest sections of both systems, although Mb + Cd hosted a broader range of coccid species than Mt + Cc. Three nematode species were recorded, but with a rather low specificity to plant or ant species. Furthermore, the fine‐scale distribution showed aggregation of closed holes with ant brood and separation of nematode‐infested refuse piles from eggs. 4. The results of this study indicate that ants manipulate spatial colony structure via distribution of brood, holes and the symbionts. It is suggested that ants optimise the location of refuse piles and occluded holes via spatial heterogeneity in their distribution among internodes. This paper discusses the protective role of occluded holes and demonstrates some general interactions with other symbiotic fauna.  相似文献   

3.
During a five‐year field study, we made observations and conducted experiments to demonstrate unequivocally that Euphyonarthex phyllostoma (Fulgoromorpha: Tettigometridae) is a myrmecophile. Isolated adults and colonies always were found in association with ants. Colonies were associated only with Camponotus brutus or C. acvapimensis (For‐micinae), whereas isolated adults were attended by ants belonging to several species of Formicinae, Dolichoderinae, and Myrmicinae. The size of the planthopper colonies reached higher levels when attended by C. brutus than by C. acvapimensis. Experiments using ant exclusion showed that both ant species protected egg masses against parasitic wasps, but egg masses were less parasitized on trees occupied by C. brutus than on those occupied by C. acvapimensis (P = 0.0052). The production of egg masses by female hoppers was recorded only when C. brutus, C. acvapimensis, or the myrmicine ant Myrmicaria opaciventris attended the hopper. In both former cases, the presence of ants influenced the aggregation of the nymphs as they dispersed when ants were excluded. The aggregation of the nymphs ensured chat they were properly attended. Parental care by the females was reduced to their presence above or close to the egg masses. In fact, specialized workers of the attending ant species protected the egg masses as well as nymphs.  相似文献   

4.
In Kinabalu National Park, Borneo we observed four colonies of the Malaysian giant ant Camponotus gigas in a primary forest. These predominantly nocturnal ants have underground nests, but forage in huge three-dimensional territories in the rain forest canopies. The colony on which our study was mainly focused had 17 nests with about 7000 foragers and occupied a territory of 0.8 ha. To improve observation and manipulation possibilities, these nests were linked at ground level by 430 m of artificial bamboo trail. A group of specialist transport worker ants carried food from `source' nests at the periphery to the central `sink' nest of the queen. Transport of food between nests started immediately after the evening exodus of the foragers. Transporter ants formed a physical subcaste among the minors and behaved according to predictions of the central-place foraging theory. Their load size was about five times that of the average forager and grew proportionally with head width. Longer distances were run by ants with greater head width and larger gross weight. Transporter ants that ran more often took heavier loads. Experiments with extra-large baits revealed that C. gigas used long-range recruitment to bring foragers from different nests to “bonanzas” at far distant places. The foraging strategy of C. gigas is based on a polydomous colony structure in combination with efficient communication, ergonomic optimization, polyethism and an effective recruitment system. Received: 16 March 1998 / Accepted: 24 August 1998  相似文献   

5.
Ants co‐occur with herbivorous thrips in several tropical plants, but their interactions are largely unexplored. Should thrips be deterred by ants, a positive effect of ants on plant fitness might be expected. Here, by using an experimental study design with ant‐present and ant‐excluded treatments, we investigated the influence of Camponotus blandus on Pseudophilothrips obscuricornis abundance and herbivory in three extrafloral nectaried species: Banisteriopsis malifolia, B. laevifolia and B. stellaris. In addition, we examined the effect of thrips herbivory on flower set and fruit development and dispersion. Thrips abundance and herbivory were higher on ant‐present stems of B. malifolia and B. laevifolia, where thrips managed to escape from ants by hiding in between clusters of flower buds (thygmotaxis behaviour). In B. stellaris the results were the opposite, as flower bud clusters did not offer hiding places, so thrips were unable to hide from ants; thus both thrips abundance and herbivory were lower on ant‐present stems. Thrips herbivory had no significant effect on flower and fruit set, but samaras (V‐shaped winged fruits of Malpighiaceae) attacked by thrips presented severe distortions and asymmetries. This caused damaged fruits to be dispersed closer to the mother plant, whereas uninjured fruits were dispersed further away. This study is evidence that ant–plant–herbivore systems have variable outcomes depending on the species involved, their behaviour and the plant structure under consideration. Unlike other herbivores, thrips negatively influence the very last stage of plant reproduction. The minute and furtive herbivorous thrips have long been ignored in natural systems, but because of their wide host range, they may be important herbivores even in extrafloral nectaried plants, which are usually fiercely protected by ants.  相似文献   

6.
A chemically defined diet is a useful tool for the study of nutritional physiology of organisms. We have developed such a diet for Camponotus carpenter ants to facilitate experiments on nutritional requirements of these ants. Worker colonies of Camponotus floridanus were fed with a chemically defined diet, containing all essential minerals, amino acids, vitamins, growth factors and sucrose in an agar matrix. After 13 weeks, neither the number of raised pupae, their dry weight, nor the mortality of workers in subcolonies fed with this diet differed significantly from control colonies fed with Bhatkar-Whitcomb-agar, in addition to cockroaches and diluted honey. Therefore, this diet is adequate for a normal brood production and a maximal growth rate of C. floridanus larvae, at least for a period of three months. This diet should be suitable for ants that are able to feed on agar-based food resources in general. Received 6 September 2006; revised 5 October 2006; accepted 18 October 2006. An erratum to this article is available at .  相似文献   

7.
Seven species of the fern Lecanopteris: L. sinuosa, L. sarcopus, L. mirabilis, L. curtisii, L. pumila, L. celebica and L. damaedii are regularly inhabited by ants of five species: Iridomyrmex cordatus, I. murinus, Crematogaster treubi, C. difformis and Camponotus pallidas. Inhabitation is not obligate; either party can survive without the other, but ferns without ants are rare in their natural habitat. The total recorded diversity of ants in Lecanopteris is 31 species, 20 of which were only recorded once.
All five regularly inhabiting ant species kept larvae in the domatium (82% of Lecanopteris specimens examined). The major ant species inhabiting Lecanopteris deposited debris in the domatium, segregated from their brood (90% of Lecanopteris specimens). Iridomyrmex murinus did not build carton around the rhizomes, but the other major inhabitants constructed runways in 79% of Lecanopteris specimens. Goccid cultivation was variable within ant and plant species: I murinus tended them in 50% of specimens, and homopterans were also recorded with Crematogaster treubi (39%), C. bomeensis (27%) and I cordatus (16%). A high frequency of ant colonies inhabiting Lecanopteris , keeping larvae, depositing debris, building carton runways, and occasionally keeping coccids has been established. Specificity of ant species is high within a population of Lecanopteris , or a given habitat or geographical area, but outside the ranges of regular inhabitants other ant occupants are found. Comparable data from other genera of ant-epiphytes with domatia show similar diversity of inhabitance over geographical areas; no data are available within single plant populations.  相似文献   

8.
9.
Ants are social, and their metabolism should be measured on at least two levels: (i) the individual workers and brood of which the colony is composed and (ii) the colony in its entirety. Whole colony respiration, tempo (size‐free running speed in body lengths per second) and whole colony activity were simultaneously measured for 15 species of ants in four subfamilies, and these data are related to average worker and whole‐colony weight, activity, percentage brood and percentage fat. Across all 15 species, whole colony respiration rate (μL CO2 h?1) is linearly related to whole colony live weight (log–log slope = 1.0). Colonies composed of large workers respire less than colonies composed of an equal live weight of small workers, and colonies with high tempos respire more than lower tempo colonies of equal weight. The tempos and respiration rates of smaller ants tend to be higher, and a higher tempo exacts a cost in higher respiration independent of the effect of small body size. Individual worker respiration (μL CO2 h?1) scales to worker live weight with an exponent of 0.76. Whole colony specific respiration rate (μL CO2 g?1 h?1) is unrelated to colony live weight. The regressions of respiration rates against colony and worker dry weight, lean weight and metabolic weight have similar slopes to those of live weight but different intercepts. Respiration is not related to worker percentage fat, percentage brood or activity. Ant ecology, tempo, body size, polymorphism and colony size are discussed in relation to respiration.  相似文献   

10.
Interactions between ants and aphidophagous and coccidophagous ladybirds   总被引:2,自引:0,他引:2  
Aphidophagous and coccidophagous coccinellids come into conflict with homopteran-tending ants for access to food. Antagonistic interactions between coccinellids and ants may be competitive or non-competitive. Competitive interactions occur when coccinellids attack aphids or coccids that are being tended by ants for honeydew. Non-competitive interactions include all interactions away from ant-tended homopteran colonies. We here review observations and studies of such interactions. We note that most competitive interactions occur at times when untended aphids/coccids are scarce. We describe the chemical and physical defences that coccinellids use against ant aggression and consider whether these have evolved as general anti-predator deterrents or specifically in response to ants. Myrmecophilous coccinellids are then considered, with particular focus on the two most studied species, Coccinella magnifica and Platynaspis luteorubra. We note that the myrmecophily of the two species has the same adaptive rationale—to enable the ladybirds to prey on ant-tended aphids at times of aphid scarcity—but that it is based on different traits to facilitate life with ants. Finally, we consider the role of ants in the evolution of habitat specialisation in some coccinellids.  相似文献   

11.
1. Farming by non‐human organisms has arisen independently in several animal lineages, allowing them to survive on food sources that are otherwise difficult to access. However, agricultural gardens are prone to invasion by parasites that overgrow cultivars in the absence of host animals. The presence of garden parasites and associated host adaptations are well studied in advanced fungal agriculture practised by social insects (ants, termites, and ambrosia beetles), but the impact of garden parasites in more primitive forms of agriculture is poorly known. The aim of the present study was to report the presence of weed fungi in fungal gardens of the non‐social lizard beetle Doubledaya bucculenta Lewis (Coleoptera: Erotylidae: Languriinae), which cultivates the yeast Wickerhamomyces anomalus (E.C. Hansen) Kurtzman, Robnett & Bas.‐Powers in the internodes of recently dead bamboo culms. 2. The filamentous fungi Arthrinium spp., Fusarium spp., and an unidentified species were isolated from the inner wall and insect‐made wall debris of bamboo internodes inhabited by the beetle. 3. When cultured together with the yeast in the absence of host larvae, Arthrinium sp.1 outcompeted the yeast, suggesting that this filamentous fungus can invade yeast gardens but is normally suppressed under natural conditions. 4. Rearing experiments showed that beetle larvae grew faster when grown on yeast cultures than when fed only Arthrinium sp.1. 5. These results suggest that Arthrinium sp.1 acts as a weed in the fungal gardens of D. bucculenta, inhibiting both growth of the beetle larvae and proliferation of the beneficial yeast.  相似文献   

12.
Causal analysis of the invasion of broad-leaved forest by bamboo in Japan   总被引:3,自引:0,他引:3  
Abstract. In southwestern Tokyo the area covered by bamboo forest has expanded by a factor of 2.7 over the last 26 years. This has mainly been due to bamboo (Phyllostachyspubescens) invading secondary broad-leaved forests, probably after these were abandoned. In the first stage, bamboo sprouts develop from rhizomes at the periphery of the broad-leaved forest and then grow very quickly into young culms. In the next phase culm density increases annually, while the existing broad-leaved trees gradually lose their vitality and die. Finally, the broad-leaved forest is completely replaced by bamboo forest. The competitive ability of bamboo, based on its morphological and growth features, is suggested as the causal factor for the invasion: (1) bamboo can invade a neighboring broad-leaved forest by its vigorous rhizomes; (2) young bamboo culms can break through the canopy of broad-leaved trees; (3) bamboo quickly forms a crown in or above the canopy of the broad-leaved forest; (4) bamboo is very tolerant of strong wind and heavy snow accumulation; (5) bamboo culms, being very pliable during strong wind mechanically damage neighbouring broad-leaved trees.  相似文献   

13.
Ant predation is widely believed to play an important role in life history and evolution of tropical social wasps. While army ants are known to cause high rates of nest loss in swarm-founding social wasps, no studies have quantified the impact of predation by non-army ants on colony success. In this study we recorded survivorship of colonies of the swarm-founding wasp, Polybia occidentalis , in Costa Rica at a site where we suspected that scouting-and-recruiting ants cause nest abandonment. We found that scouting-and-recruiting ants prey upon active nests of P. occidentalis , and conclude that predation by these ants is an important brood mortality factor in the life history of P. occidentalis colonies at our field site.  相似文献   

14.
The relationship between emigrations and anti-predator behaviour in the ant Pheidole desertorum was investigated in the field. Frequent emigrations in P. desertorum result in the colony having multiple nests, of which only one is occupied at a time. A field procedure demonstrated that the ants quickly find and enter the unoccupied nests after a nest evacuation caused by the army ant Neivamyrmex nigrescens. When colonies were denied access to their unoccupied nests after an evacuation, survival of the brood and alates was significantly lower than in colonies allowed access to all their nests. These results suggest that emigrations in P. desertorum are part of a defence strategy against army ants.  相似文献   

15.
Division of labour improves the efficiency of animal societies. Efficiency is further improved in many social insects where morphologically specialized adults perform different tasks. In ants, the wingless worker caste performs non‐reproductive activities and sometimes exhibits multiple phenotypes when requirements between brood care and expert foraging diverge. Mystrium rogeri from Madagascar is a specialist predator on large centipedes, and the worker caste is highly polymorphic in size. In contrast, M. oberthueri has only large workers. The replacement of the queen caste by wingless intermorphs much smaller than workers explains this evolutionary shift in M. oberthueri. Many intermorphs occur in each colony but only a few mate and reproduce. In order to determine their contribution to non‐reproductive tasks, we performed multivariate analyses on behavioural data recorded by scan sampling from four M. oberthueri colonies in the laboratory. In unmanipulated colonies, workers and intermorphs exhibited two distinct behavioural profiles. Workers focused on guarding and foraging, while intermorphs performed brood care and nest cleaning, regardless of whether they reproduced or not. This pattern of polyethism where the reproductive caste completely takes charge of some non‐reproductive tasks is novel, as confirmed by our observations of one colony of M. rogeri where non‐reproductive tasks were restricted to workers, as in most ants. When isolated from one another, M. oberthueri workers and intermorphs developed less distinctive behavioural patterns. Some workers cared for the brood, but the intermorphs could not hunt because of their small mandibles. Such plasticity in polyethism at the colony level confers the ability to react to unexpected changes, including variable proportions of workers and intermorphs.  相似文献   

16.
Use of leaf resources by a troop of howling monkeys and two colonies of leaf cutting ants was studied for an annual cycle in the rain forest of Los Tuxtlas, Mexico. Howling monkeys spent half their annual foraging time feeding on leaves; leaf-cutting ants spent at least 80% of their recorded foraging time harvesting leaves. Both herbivores preferred young leaves over nature ones, and chemical analysis showed that the protein: fibre ratio of the leaves used was correlated with these preferences. Howling monkeys used 34 tree species as leaf sources. Leaf-cutting ants used 40 plant species of which 38 were trees. Eighteen species used by Alouatta were also used by Atta; species of Moraceae and Lauraceae were among the most important in their foraging preferences. The plant species used by monkeys and ants occurred at low densities (? 4.0 ind/ha). The seasonal production of leaves, the high density of leaf-cutting ant colonies at the study site, and the high amounts of young foliage harvested by the ants from tree species, and individual trees used by howling monkeys as sources of young leaves suggest that the foraging activities of Atta may represent a significant pressure upon leaf resources available to Alouatta.  相似文献   

17.
Phengaris (Maculinea) butterflies are social parasites of Myrmica ant colonies. Larvae of the parasite are adopted by the ant workers into the colonies. Apparently, chemical signals are used by Phengaris nausithous Bergsträsser larvae to mimic those of the host brood to be recognized by the ants. In the present study, chemical extracts of ant brood and butterfly larvae using four different solvents are tested in behavioural choice assays in search of compounds involved in the adoption process. Tetracosane is the main shared compound in all brood extracts of Myrmica rubra L. and in all larvae of P. nausithous. The attractiveness of tetracosane for M. rubra workers is confirmed by testing synthetic tetracosane in behavioural choice assays, suggesting that the adoption ritual may be initiated by tetracosane.  相似文献   

18.
Summary We examined division of labor and colony demography in the antPonera pennsylvannica. Observation of three colonies with individually marked workers revealed a high degree of interindividual behavioral variation and a rough but consistent division of labor between brood tenders and foragers. This division was present both in colonies consisting entirely of workers produced in the previous summer and in colonies containing freshly eclosed ants. Two colonies showed typical age-based polyethism, with young ants focusing on brood care and overwintered ants on foraging. No such age basis was detected in the third colony. This difference may relate to variability in brood production schedules. Colonies showing temporal polyethism had two peaks of brood production and thus had relatively large brood populations when the first young workers eclosed, while the third colony had only one peak and little brood for the young workers to tend. Even if young ants have a lower threshold for brood care, it may have been concealed in the latter situation. Demographic data indicate that natural colonies produce one brood per year and that workers typically eclose into colonies with relatively low brood care demands. This suggests that overwintered workers do most of a colony's work and that the division of labor among overwintered ants is the more important one under natural conditions. The basis of this division is as yet unknown. These results also suggest that small colony size, univoltine brood schedule and a close association between foraging and brood care do not preclude division of labor among specialized castes, as has been suggested for another ponerine species (Traniello 1978).  相似文献   

19.
By estimating relative costs and benefits, we explored the role of the homopteran partner in the protection mutualism between the myrmecophyte Leonardoxa africana T3, the ant Aphomomyrmex afer, and sap-sucking homopterans tended by ants in the tree''s swollen hollow twigs. The ants obtain nest sites and food from their host-plant (food is obtained either directly by extrafloral nectar or indirectly via homopterans). Aphomomyrmex workers patrol the young leaves of L. africana T3 and protect them against phytophagous insects. Because ants tended, either solely or primarily, coccids in some trees and pseudococcids in others, we were able to study whether the nature of the interaction was dependent on the identity of the third partner. First, the type of homopteran affects the benefits to the tree of maintaining a large ant colony. Larger colony size (relative to tree size) confers greater protection against herbivory; this relationship is more pronounced for trees whose ants tend pseudococcids than for those in which ants tend coccids. Second, for trees (and associated ant colonies) of comparable size, homopteran biomass was much larger in trees harbouring coccids than in trees with pseudococcids. Thus, the cost to the tree of maintaining ants may be greater when ants are associated with coccids. The net benefits to the plant of maintaining ants appear to be much greater with pseudococcids as the third partner. To explore how the type of homopteran affects functioning of the system, we attempted to determine which of the resources (nest sites, extrafloral nectar, and homopterans) is likely to limit ant colony size. In trees where ants tended coccids, ant-colony biomass was strongly dependent on the number of extrafloral nectaries. In contrast, in trees whose ants tended only pseudococcids, colony biomass was not related to the number of nectaries and was most strongly determined by the volume of available nest sites. We present hypotheses to explain how the type of homopteran affects functioning of this symbiosis, and discuss the implications of our study for the evolutionary ecology of ant–plant–homopteran relationships.  相似文献   

20.
Understanding the determinants of reproductive skew (the partitioning of reproduction among co‐breeding individuals) is one of the major questions in social evolution. In ants, multiple‐queen nests are common and reproductive skew among queens has been shown to vary tremendously both within and between species. Proximate determinants of skew may be related to both queen and worker behaviour. Queens may attempt to change their reproductive share through dominance interactions, egg eating and by changing individual fecundity. Conversely, workers are in a position to regulate the reproductive output of queens when rearing the brood. This paper investigates queen behaviour at the onset of egg laying and the effect of queen fecundity and worker behaviour on brood development and reproductive shares of multiple queens in the ant Formica fusca. The study was conducted in two‐queen laboratory colonies where the queens produced only worker offspring. The results show that in this species reproductive apportionment among queens is not based on dominance behaviour and aggression, but rather on differences in queen fecundity. We also show that, although the queen fecundity at the onset of brood rearing is a good indicator of her final reproductive output, changes in brood composition occur during brood development. Our results highlight the importance of queen fecundity as a major determinant of her reproductive success. They furthermore suggest that in highly derived polygyne species, such as the Formica ants, direct interactions as a means for gaining reproductive dominance have lost their importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号