首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aetiological agent of amphibian chytridiomycosis Batrachochytrium dendrobatidis is a primary cause of amphibian population declines. Current surveillance is based on the detection of B. dendrobatidis in its host but in vitro work suggests infective stages may survive in the abiotic environment for at least 3 mo. We describe here a surveillance system using filtration and quantitative PCR that can detect B. dendrobatidis in small (< 1 l) volumes of water. After assessing the analytical sensitivity of the protocol for both water and sediment samples in the laboratory, we analyzed environmental samples from the Sierra de Guadarrama mountain range in Spain at locations associated with chytrid-related die-offs and at other sites across Spain. B. dendrobatidis was detected in samples from 64% of the ponds in the Sierra de Guadarrama and at 2 sites outside this region, showing that levels of amphibian exposure to B. dendrobatidis are spatially heterogeneous. In experimental microcosms, we detected B. dendrobatidis for up to 12 wk, though we found no evidence for an overall increase in biomass. Our results emphasise the need to further investigate the life cycle of B. dendrobatidis to more completely understand the epidemiology of this emerging pathogen.  相似文献   

2.
Chytridiomycosis caused by Batrachochytrium dendrobatidis (Chytridiomycota) has been implicated in declines of amphibian populations on four continents. We have developed a sensitive and specific polymerase chain reaction-based assay to detect this pathogen. We isolated B. dendrobatidis from captive and wild amphibians collected across North America and sequenced the internal transcribed spacer regions of the rDNA cassette of multiple isolates. We identified two primers (Bd1a and Bd2a) that are specific to B. dendrobatidis under amplification conditions described in this study. DNA amplification with Bd1a/Bd2a primers produced a fragment of approximately 300 bp from B. dendrobatidis DNA but not from DNA of other species of chytrids or common soil fungi. The assay detected 10 zoospores or 10 pg of DNA from B. dendrobatidis and detected infections in skin samples from a tiger salamander (Ambystoma tigrinum), boreal toads (Bufo boreas), Wyoming toads (Bufo baxteri), and smooth-sided toads (Bufo guttatus). This assay required only small samples of skin and can be used to process a large number of samples.  相似文献   

3.
Batrachochytrium dendrobatidis is the chytridiomycete fungus which has been implicated in global amphibian declines and numerous species extinctions. Here, we show that introduced North American bullfrogs (Rana catesbeiana) consistently carry this emerging pathogenic fungus. We detected infections by this fungus on introduced bullfrogs from seven of eight countries using both PCR and microscopic techniques. Only native bullfrogs from eastern Canada and introduced bullfrogs from Japan showed no sign of infection. The bullfrog is the most commonly farmed amphibian, and escapes and subsequent establishment of feral populations regularly occur. These factors taken together with our study suggest that the global threat of B. dendrobatidis disease transmission posed by bullfrogs is significant.  相似文献   

4.
Batrachochytrium dendrobatidis has been investigated worldwide because of its importance in population declines in multiple species of amphibians; however, little is known regarding the disease status of all native amphibian species in China. The present study is the first survey of chytridiomycosis in free-ranging amphibian populations in China, and it examined the possible presence of B. dendrobatidis in Rana dybowskii in northeastern China (Heilongjiang Province). R. dybowskii is mainly distributed in the northeast part of China and is intensively hunted for human consumption, making populations vulnerable to extirpation in the event of additional stresses from disease epidemics. The survey was performed in early spring of 2008, using a PCR assay, histological examination of skin samples, and zoospore culture. In total, 191 frogs were examined; thus, a 95% confidence limit for prevalence of 1.57% was selected. Our results demonstrate that R. dybowskii is currently free from chytridiomycosis in Heilongjiang, even though the natural conditions of the sampling sites are suitable for the occurrence of B. dendrobatidis. Central and local governments should implement strict management measures to prevent the escape of non-native commercial amphibian species into this area, which might endanger local populations of native species.  相似文献   

5.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated as the causative agent of mass mortalities, population declines and the extinctions of amphibian species worldwide. Although several studies have shown that the prevalence of chytridiomycosis (the disease caused by the fungus) increases in cooler months, the magnitude and timing of these seasonal fluctuations have yet to be accurately quantified. We conducted disease sampling in a single population of stony creek frogs Litoria wilcoxii on 13 occasions over a 21-month period and used quantitative real-time polymerase chain reaction to detect and quantify the number of B. dendrobatidis zoospores present on samples. Disease prevalence varied significantly across sampling sessions, peaking at 58.3% (in early spring) and dropping to as low as 0% on two occasions (late summer and early autumn). There was a significant negative relationship between disease prevalence and mean air temperature in the 30 days prior to sampling. These large-scale seasonal fluctuations in chytridiomycosis levels will strongly influence conservation programs and amphibian disease research.  相似文献   

6.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated as the causative agent of mass mortalities, population declines, and the extinctions of stream-breeding amphibian species worldwide. While the factors that limit the distribution and abundance of B. dendrobatidis across large geographical regions are fairly well understood, little is known about the distribution of the fungus within localized areas such as individual catchments. The accurate identification of amphibian populations likely to be exposed to the fungus is urgently required for effective disease management. We conducted disease surveys of frogs representing five ecological guilds in south-east Queensland, Australia, and hypothesized that if B. dendrobatidis were responsible for the disappearance of stream-breeding amphibian populations, infection prevalence and intensity would be greatest in frogs breeding in permanent, flowing water. Overall, 30.3% of the 519 frogs we sampled were infected with B. dendrobatidis . However, infections were not evenly distributed across the ecological guilds, being almost completely restricted to frogs breeding at permanent waterbodies. Of these, stream breeders were significantly more likely to be infected than were pond breeders, though the intensity of frogs' infections did not differ significantly between the two guilds. Batrachochytrium dendrobatidis was detected on only one of the 117 frogs that were found at ephemeral ponds, ephemeral streams, or terrestrial sites. These findings provide strong support for the hypothesis that B. dendrobatidis was responsible for many of the unexplained disappearances of stream-breeding amphibian populations in recent decades, and will enable wildlife managers to more accurately focus conservation efforts on those species at highest risk of disease-related decline.  相似文献   

7.
The fungal pathogen Batrachochytrium dendrobatidis threatens amphibian populations around the world. The ability to detect this pathogen on infected animals and in the environment is critical for understanding and controlling this pandemic. We tested several advances in quantitative PCR (qPCR) techniques to detect B. dendrobatidis DNA. We used a fast PCR thermocycler and enzymes that reduced the volume and the duration of the reaction. We also compared a conventional TaqMan minor groove binding (MGB) probe to an identical locked nucleic acid (LNA) counterpart. The fast qPCR reaction had a high degree of sensitivity to B. dendrobatidis DNA. The LNA probe was effective for detecting B. dendrobatidis DNA and produced results -similar to those of the MGB probe. The modifications that we tested can improve the cost, time efficiency and specificity of quantitative PCR as a tool for detecting pathogen DNA.  相似文献   

8.
The efficacy of a number of disinfection treatments was tested on in vitro cultures of the fungus Batrachochytrium dendrobatidis, the causative agent of chytridiomycosis in amphibians. The aim was to evaluate the fungicidal effects of chemical disinfectants, sterilising ultraviolet (UV) light, heat and desiccation, using methods that were feasible for either disinfection in the field, in amphibian husbandry or in the laboratory. The chemical disinfectants tested were: sodium chloride, household bleach (active ingredient: sodium hypochlorite), potassium permanganate, formaldehyde solution, Path-X agricultural disinfectant (active ingredient: didecyl dimethyl ammonium chloride, DDAC), quaternary ammonium compound 128 (DDAC), Dithane, Virkon, ethanol and benzalkonium chloride. In 2 series of experiments using separate isolates of B. dendrobatidis, the fungicidal effect was evaluated for various time periods and at a range of chemical concentrations. The end point measured was death of 100% of zoospores and zoosporangia. Nearly all chemical disinfectants resulted in 100%, mortality for at least one of the concentrations tested. However, concentration and time of exposure was critical for most chemicals. Exposure to 70% ethanol, 1 mg Virkon ml(-1) or 1 mg benzalkonium chloride ml(-1) resulted in death of all zoosporangia after 20 s. The most effective products for field use were Path-X and the quaternary ammonium compound 128, which can be used at dilutions containing low levels (e.g. 0.012 or 0.008%, respectively) of the active compound didecyl dimethyl ammonium chloride. Bleach, containing the active ingredient sodium hypochlorite, was effective at concentrations of 1% sodium hypochlorite and above. Cultures did not survive complete drying, which occurred after <3 h at room temperature. B. dendrobatidis was sensitive to heating, and within 4 h at 37 degrees C, 30 min at 47 degrees C and 5 min at 60 degrees C, 100% mortality occurred. UV light (at 1000 mW m(-2) with a wavelength of 254 nm) was ineffective at killing B. dendrobatidis in culture.  相似文献   

9.
Since the early 1980s, the southern corroboree frog Pseudophryne corroboree and northern corroboree frog P. pengilleyi have been in a state of decline from their sub-alpine and high montane bog environments on the southern tablelands of New South Wales, Australia. To date, there has been no adequate explanation as to what is causing the decline of these species. We investigated the possibility that a pathogen associated with other recent frog declines in Australia, the amphibian chytrid fungus Batrachochytrium dendrobatidis, may have been implicated in the decline of the corroboree frogs. We used histology of toe material and real-time PCR of skin swabs to investigate the presence and infection rates with B. dendrobatidis in historic and extant populations of both corroboree frog species. Using histology, we did not detect any B. dendrobatidis infections in corroboree frog populations prior to their decline. However, using the same technique, high rates of infection were observed in populations of both species after the onset of substantial population declines. The real-time PCR screening of skin swabs identified high overall infection rates in extant populations of P. corroboree (between 44 and 59%), while significantly lower rates of infection were observed in low-altitude P. pengilleyi populations (14%). These results suggest that the initial and continued decline of the corroboree frogs may well be attributed to the emergence of B. dendrobatidis in populations of these species.  相似文献   

10.
Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, is considered to be a disease exclusively of amphibians. However, B. dendrobatidis may also be capable of persisting in the environment, and non-amphibian vectors or hosts may contribute to disease transmission. Reptiles living in close proximity to amphibians and sharing similar ecological traits could serve as vectors or reservoir hosts for B. dendrobatidis, harbouring the organism on their skin without succumbing to disease. We surveyed for the presence of B. dendrobatidis DNA among 211 lizards and 8 snakes at 8 sites at varying elevations in Panama where the syntopic amphibians were at pre-epizootic, epizootic or post-epizootic stages of chytridiomycosis. Detection of B. dendrobatidis DNA was done using qPCR analysis. Evidence of the amphibian pathogen was present at varying intensities in 29 of 79 examined Anolis humilis lizards (32%) and 9 of 101 A. lionotus lizards (9%), and in one individual each of the snakes Pliocercus euryzonus, Imantodes cenchoa, and Nothopsis rugosus. In general, B. dendrobatidis DNA prevalence among reptiles was positively correlated with the infection prevalence among co-occurring anuran amphibians at any particular site (r = 0.88, p = 0.004). These reptiles, therefore, may likely be vectors or reservoir hosts for B. dendrobatidis and could serve as disease transmission agents. Although there is no evidence of B. dendrobatidis disease-induced declines in reptiles, cases of coincidence of reptile and amphibian declines suggest this potentiality. Our study is the first to provide evidence of non-amphibian carriers for B. dendrobatidis in a natural Neotropical environment.  相似文献   

11.
Amphibian population declines in Honduras have long been attributed to habitat degradation and pollution, but an increasing number of declines are now being observed from within the boundaries of national parks in pristine montane environments. The amphibian chytrid fungus Batrachochytrium dendrobatidis has been implicated in these declines and was recently documented in Honduras from samples collected in Pico Bonito National Park in 2003. This report now confirms Cusuco National Park, a protected cloud forest reserve with reported amphibian declines, to be the second known site of infection for Honduras. B. dendrobatidis infection was detected in 5 amphibian species: Craugastor rostralis, Duellmanohyla soralia, Lithobates maculata, Plectrohyla dasypus, and Ptychohyla hypomykter. D. soralia, P. dasypus, and P. hypomykter are listed as critically endangered in the IUCN Red List of Threatened Species and have severely fragmented or restricted distributions. Further investigations are necessary to determine whether observed infection levels indicate an active B. dendrobatidis epizootic with the potential to cause further population declines and extinction.  相似文献   

12.
The purpose of this study was to establish a method for eradicating a chytrid fungus (Batrachochytrium dendrobatidis; Bd) from the Japanese giant salamander Andrias japonicus. The emerging agent (Bd) has a high rate of detection in this endangered amphibian species, which is designated as a special natural monument in Japan. Four Japanese giant salamanders with Bd confirmed by PCR assay were bathed in 0.01% itraconazole for 5 min d-1 over 10 successive days. PCR assays were conducted prior to treatment, on Days 5 and 10 of treatment, and on Days 7 and 14 post-treatment. By treatment Day 5, all individuals tested negative for Bd and remained negative until the end of the experiment. No side effects associated with itraconazole were observed. The present method appears to be a safe and effective approach for Bd eradication and may contribute to reducing the threat and spread of Bd among endangered amphibians. Notably, this study represents the first reported Bd eradication experiment involving Japanese giant salamanders.  相似文献   

13.
PCR: how to kill unwanted DNA.   总被引:15,自引:0,他引:15  
A M Prince  L Andrus 《BioTechniques》1992,12(3):358-360
Avoidance of contamination in the PCR laboratory requires the use of strict precautions. Among these, chemical decontamination of surfaces and equipment is desirable to prevent inadvertent contamination of samples by the gloved hand and by pipettors. We have investigated the use of sodium hypochloride (Clorox), in comparison to concentrated HCl, for PCR sterilization. Ten percent Clorox was found to eliminate all ethidium bromide-stainable DNA and to prevent PCR amplification of a 600-bp DNA segment within one minute of template treatment. RNA was similarly destroyed. By contrast, even 2.0 N HCl did not destroy DNA detectable by PCR within five minutes. Because of its high efficacy, low cost and relatively low corrosiveness, we recommend the use of ten percent Clorox as a decontaminant for elimination of DNA templates in the PCR laboratory.  相似文献   

14.
Chytridiomycosis is an emerging infectious disease of amphibians caused by a chytrid fungus, Batrachochytrium dendrobatidis. This panzootic does not equally affect all amphibian species within an assemblage; some populations decline, others persist. Little is known about the factors that affect disease resistance. Differences in behavior, life history, biogeography, or immune function may impact survival. We found that an innate immune defense, antimicrobial skin peptides, varied significantly among species within a rainforest stream amphibian assemblage that has not been exposed to B. dendrobatidis. If exposed, all amphibian species at this central Panamanian site are at risk of population declines. In vitro pathogen growth inhibition by peptides from Panamanian species compared with species with known resistance (Rana pipiens and Xenopus laevis) or susceptibility (Bufo boreas) suggests that of the nine species examined, two species (Centrolene prosoblepon and Phyllomedusa lemur) may demonstrate strong resistance, and the other species will have a higher risk of disease-associated population declines. We found little variation among geographically distinct B. dendrobatidis isolates in sensitivity to an amphibian skin peptide mixture. This supports the hypothesis that B. dendrobatidis is a generalist pathogen and that species possessing an innate immunologic defense at the time of disease emergence are more likely to survive.  相似文献   

15.
Chytridiomycosis is an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis, which has been implicated in amphibian declines worldwide. The mountain yellow-legged frog Rana muscosa is a declining amphibian species that can be infected by B. dendrobatidis; however, transmission between conspecifics has not been documented. Here, we present experimental evidence that R. muscosa tadpoles can be infected by fungal zoospores and that they can transmit infection to each other and to postmetamorphic animals. We compared several techniques for detecting B. dendrobatidis transmission and found that histology with serial sectioning was able to detect infection before cytology or visual inspections. We also show that R. muscosa tadpoles appear healthy with B. dendrobatidis infection, while postmetamorphic animals experience mortality. In addition, we provide guidelines for visually detecting B. dendrobatidis in R. muscosa tadpoles, which may be useful in other affected species. Field surveys of infected and uninfected populations verify this identification technique.  相似文献   

16.
The amphibian chytrid fungus, Batrachochytrium dendrobatidis, Bd, has been implicated in the decimation and extinction of many amphibian populations worldwide, especially at mid and high elevations. Recent studies have demonstrated the presence of the pathogen in the lowlands from Australia and Central America. We extend here its elevational range by demonstrating its presence at the sea level, in the lowland forests of Gorgona Island, off the Pacific coast of Colombia. We conducted two field surveys, separated by four?years, and diagnosed Bd by performing polymerase chain reactions on swab samples from the skin of five amphibian species. All species, including the Critically Endangered Atelopus elegans, tested positive for the pathogen, with prevalences between 3.9?% in A. elegans (in 2010) and 52?% in Pristimantis achatinus. Clinical signs of chytridiomycosis were not detected in any species. To our knowledge, this is the first report of B. dendrobatidis in tropical lowlands at sea level, where temperatures may exceed optimal growth temperatures of this pathogen. This finding highlights the need to understand the mechanisms allowing the interaction between frogs and pathogen in lowland ecosystems.  相似文献   

17.
Batrachochytrium dendrobatidis, the causative agent of chytridiomycosis, was found in 24 of 109 (22%) frogs from Kibale National Park, western Uganda, in January and June 2006, representing the first account of the fungus in six species and in Uganda. The presence of B. dendrobatidis in an equatorial African montane forest raises conservation concerns, considering the high amphibian diversity and endemism characteristic of such areas and their ecological similarity to other regions of the world experiencing anuran declines linked to chytridiomycosis.  相似文献   

18.
Chytridiomycosis, caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease responsible for amphibian declines on several continents. In laboratory conditions, optimal temperatures for Bd growth and survivorship are between 17 and 25 degrees C. We investigated the effect of different storage temperatures, both in field and laboratory conditions, on detection of Bd from swabs stored for 7 d. We sampled 52 wild Litoria wilcoxii males for Bd by simultaneously running 2 cotton swabs along the skin of the frog. One group of swabs was stored in a freezer within 2 h of sampling and the other was kept in a car in an exposed environment for 7 d before being stored in the freezer. In the laboratory experiment, swabs were inoculated with zoospores of Bd and underwent one of 4 treatments: immediate DNA extraction, or storage at 27, 38 or 45 degrees C for 7 d prior to DNA extraction. Swabs from all treatments were analyzed by quantitative (real-time) PCR test. Though prevalence of Bd did not differ significantly between swabs that were frozen and those that remained in a car for 7 d (19.2 vs. 17.3%, respectively), the number of Bd zoospores detected on car swabs taken from infected frogs was, on average, 67% less than that detected on the corresponding frozen swab. In the laboratory experiment, the number of zoospore equivalents varied significantly with treatment (F(3,35) = 4.769, p = 0.007), indicating that there was reduced recovery of Bd DNA from swabs stored at higher temperatures compared with those stored at lower temperatures or processed immediately. We conclude that failure to store swabs in cool conditions can result in a significant reduction in the amount of Bd DNA detected using the PCR assay. Our results have important implications for researchers conducting field sampling of amphibians for Bd.  相似文献   

19.
Batrachochytrium dendrobatidis is a major pathogen of frogs worldwide, associated with declines in amphibian populations. Diagnosis of chytridiomycosis to date has largely relied upon histological and immunohistochemical examination of toe clips. This technique is invasive and insensitive particularly at early stages of infection when treatment may be possible. We have developed a real-time PCR Taqman assay that can accurately detect and quantify one zoospore in a diagnostic sample. This assay will assist the early detection of B. dendrobatidis in both captive and wild populations, with a high degree of sensitivity and specificity, thus facilitating treatment and protection of endangered populations, monitoring of pristine environments and preventing further global spread via amphibian trade.  相似文献   

20.
Chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis, threatens anuran populations worldwide. Effects of B. dendrobatidis on frog species are variable. Some species typically develop nonlethal infections and may function as carriers; others typically develop lethal infections that can lead to population declines. Nonlethal infections in the bullfrog (Lithobates catesbeianus) are well-documented. In contrast, recently metamorphosed wood frogs (L. sylvaticus) can die from chytridiomycosis. We conducted an ex-situ experiment between May and July 2010 to determine whether B. dendrobatidis-infected bullfrogs could transmit the fungus to wood frog tadpoles when the two species shared a body of water. We tested for B. dendrobatidis infections with quantitative polymerase chain reactions (qPCR) in a subsample of the wood frog tadpoles and in all metamorphosed wood frogs and compared risk of death of froglets exposed and unexposed to infected bullfrogs. We detected B. dendrobatidis sporadically in subsampled treatment tadpoles (nine of 90, 10%) and frequently in treatment froglets (112 of 113, 99.1%). Pooled risk of froglet death was higher (P<0.001) in treatment enclosures than in control enclosures. Our results indicate that, at the low infection loads bullfrogs tend to carry, swabbing for PCR analyses may underestimate prevalence of B. dendrobatidis in this species. We highlight bullfrog disease screening as a management challenge, especially in light of exotic bullfrog colonies on multiple continents and large-scale global trade in this species. We document the importance of quantifying lethal and sublethal effects of bullfrog vectors on B. dendrobatidis-susceptible species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号