首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Karstic cave systems in Slovenia receive substantial amounts of organic input from adjacent forest and freshwater systems. These caves host microbial communities that consist of distinct small colonies differing in colour and shape. Visible to the naked eye, the colonies cover cave walls and are strewn with light-reflecting water droplets. In this study, the diversity of prokaryotes constituting these unusual microbial communities in Pajsarjeva jama cave was examined. A molecular survey based on small subunit rRNA diversity showed a high diversity within the Bacteria , while members of Archaea were not recovered. A total of eight bacterial phyla were detected. The application of various species richness estimators confirmed the diverse nature of the microbial community sample. Members of Gammaproteobacteria were most abundant in the clone libraries constructed and were followed in abundance by members of Actinobacteria and Nitrospira . In addition, members of Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria as well as Acidobacteria, Verrucomicrobia, Planctomycetes, Chloroflexi and Gemmatimonadetes were identified in clone libraries. The high number of clones most closely related to environmental 16S rRNA gene clones showed the broad spectrum of unknown and yet to be cultivated microorganisms inhabiting these cave systems.  相似文献   

2.
Araruama Lagoon is an environment characterized by high salt concentrations. The low raining and high evaporation rates in this region favored the development of many salty ponds around the lagoon. In order to reveal the microbial composition of this system, we performed a 16S rRNA gene survey. Among archaea, most clones were related to uncultured environmental Euryarchaeota. In lagoon water, we found some clones related to Methanomicrobia and Methanothermococcus groups, while in the saline pond water members related to the genus Haloarcula were detected. Bacterial community was dominated by clones related to Gamma-proteobacteria, Actinobacteria, and Synechococcus in lagoon water, while Salinibacter ruber relatives dominated in saline pond. We also detected the presence of Alpha-proteobacteria, Pseudomonas-like bacteria and Verrucomicrobia. Only representatives of the genus Ralstonia were cosmopolitan, being observed in both systems. The detection of a substantial number of clones related to uncultured archaea and bacteria suggest that the hypersaline waters of Araruama harbor a pool of novel prokaryotic phylotypes, distinct from those observed in other similar systems. We also observed clones related to halophilic genera of cyanobacteria that are specific for each habitat studied. Additionally, two bacterioplankton molecular markers with ecological relevance were analyzed, one is linked to nitrogen fixation (nifH) and the other is linked to carbon fixation by bacterial photosynthesis, the protochlorophyllide genes, revealing a specific genetic distribution in this ecosystem. This is the first study of the biogeography and community structure of microbial assemblages in Brazilian tropical hypersaline environments. This work is directed towards a better understanding of the free-living prokaryotic diversity adapted to life in hypersaline waters.  相似文献   

3.
Kartchner Caverns is an oligotrophic subterranean environment that hosts a wide diversity of actively growing calcite speleothems (secondary mineral deposits). In a previous study, we demonstrated that bacterial communities extracted from these surfaces are quite complex and vary between formations. In the current study, we evaluated the influence of several environmental variables on the superficial bacterial community structure of 10 active formations located in close proximity to one another in a small room of Kartchner Caverns State Park, Arizona, USA. Physical (color, dimensions) and chemical (elemental profile and organic carbon concentration) properties, as well as the DGGE-based bacterial community structure of the formations were analyzed. While elemental concentration was found to vary among the formations, the differences in the community structure could not be correlated with concentrations of either organic carbon or any of the elements evaluated. In contrast, the locations of formations within a distinct region of the cave as well as the relative location of specific formations within a single room were found to have a significant influence on the bacterial community structure of the formations evaluated. Interestingly, Canonical Correspondence Analysis suggests an association between the observed drip pathways (drip lines) feeding the formations (as determined by the patterns of soda straws and small stalactites that reveal water flow patterns) and the bacterial community structure of the respective formations. The results presented here indicate that a broad range of formations fed by a diversity of drip sources must be sampled to fully characterize the community composition of bacteria present on the surfaces of calcite formations in carbonate caves.  相似文献   

4.
Despite iodine being one of the most abundant of the minor elements in oxic seawater, the principal processes controlling its interconversion from iodate to iodide and vice versa, are still either elusive or largely unknown. The two major hypotheses for iodate reduction involve either phytoplankton growth in primary production, or bacteria during regeneration. An earlier study intended to exploit the unusual nature of anchialine environments revealed that iodide is oxidised to iodate in the bottom of such caves, whereas reduction of iodate occurs in the shallower parts of the water column. This investigation was made on the hypothesis that study of the nitrogen and phosphorus nutrient systems within the caves might offer a bridge between the iodine chemistry and the marine bacteria which are assumed to be the agent of change of the iodine in the caves. Accordingly, the hydrography, the nutrient chemistry, and some further iodine studies were made of two anchialine caves on the east coast of the Adriatic Sea in Croatia. Iodate and iodide were determined by differential pulse voltammetry and cathodic stripping square-wave voltammetry, respectively. Total iodine was determined indirectly, as iodate, after oxidation of reduced iodine species with UV irradiation and strong chemical oxidants. Nutrient concentrations were measured by spectrophotometry. Nutrient profiles within the well stratified water columns indicate a relatively short-lived surface source of nitrate and phosphate to the caves, with a more conventional, mid-water, nutrient regeneration system. The latter involves nitrite and ammonium at the bottom of the halocline, suggestive of both autotrophic and heterotrophic microbial activity. High iodate/low iodide deep water, and conservative behaviour of total inorganic iodine were confirmed in both systems. Iodate is reduced to iodide in the hypoxic region where nutrient regeneration occurs. The concentrations of organic iodine were surprisingly high in both systems, generally increasing toward the surface, where it comprised almost 80% of total iodine. As with alkalinity and silica, the results suggest that this refractive iodine component is liberated during dissolution of the surrounding karst rock. A major, natural flushing of one of the caves with fresh water was confirmed, showing that the cave systems offer the opportunity to re-start investigations periodically.  相似文献   

5.
The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0%), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment.  相似文献   

6.
Carbonate caves represent subterranean ecosystems that are largely devoid of phototrophic primary production. In semiarid and arid regions, allochthonous organic carbon inputs entering caves with vadose-zone drip water are minimal, creating highly oligotrophic conditions; however, past research indicates that carbonate speleothem surfaces in these caves support diverse, predominantly heterotrophic prokaryotic communities. The current study applied a metagenomic approach to elucidate the community structure and potential energy dynamics of microbial communities, colonizing speleothem surfaces in Kartchner Caverns, a carbonate cave in semiarid, southeastern Arizona, USA. Manual inspection of a speleothem metagenome revealed a community genetically adapted to low-nutrient conditions with indications that a nitrogen-based primary production strategy is probable, including contributions from both Archaea and Bacteria. Genes for all six known CO2-fixation pathways were detected in the metagenome and RuBisCo genes representative of the Calvin–Benson–Bassham cycle were over-represented in Kartchner speleothem metagenomes relative to bulk soil, rhizosphere soil and deep-ocean communities. Intriguingly, quantitative PCR found Archaea to be significantly more abundant in the cave communities than in soils above the cave. MEtaGenome ANalyzer (MEGAN) analysis of speleothem metagenome sequence reads found Thaumarchaeota to be the third most abundant phylum in the community, and identified taxonomic associations to this phylum for indicator genes representative of multiple CO2-fixation pathways. The results revealed that this oligotrophic subterranean environment supports a unique chemoautotrophic microbial community with potentially novel nutrient cycling strategies. These strategies may provide key insights into other ecosystems dominated by oligotrophy, including aphotic subsurface soils or aquifers and photic systems such as arid deserts.  相似文献   

7.
To a semi-continuous lab-scale activated sludge system (SCAS), nitrite was dosed discontinuously, i.e. together with the feed. The nitrite was added at a concentration (50 mg N/l) which had been found earlier not to cause acute inhibition of the general running of the reactors. Repeated nitrite addition, however, exerted an inhibitory effect which was reflected in decreased removal efficiencies and was also expressed in decreases in total respiratory and nitrifying activity of 20% and 40%, respectively. The inhibition by nitrite was reversible as removal efficiencies improved after ceasing nitrite addition. The two consecutive test runs revealed that addition of nitrite gave rise to high amounts of dispersed cells and free-swimming protozoa. Moreover, DGGE patterns confirmed a shift in microbial community structure upon application of nitrite.  相似文献   

8.
Bacteria inhabiting crystalline rocks from two terrestrial Icelandic volcanic lava flows of similar age and from the same geographical region, but differing in porosity and mineralogy, were characterised. Microarray (PhyloChip) and clone library analysis of 16S rRNA genes revealed the presence of a diverse assemblage of bacteria in each lava flow. Both methods suggested a more diverse community at the Dómadalshraun site (rhyolitic/andesitic lava flow) than that present at the Hnausahraun site (basaltic lava flow). Proteobacteria dominated the clone library at the Dómadalshraun site, while Acidobacteria was the most abundant phylum in the Hnausahraun site. Although analysis of similarities of denaturing gradient gel electrophoresis profiles suggested a strong correlation of community structure with mineralogy, rock porosity may also play an important role in shaping the bacterial community in crystalline volcanic rocks. Clone sequences were most similar to uncultured microorganisms, mainly from soil environments. Of these, Antarctic soils and temperate rhizosphere soils were prominent, as were clones retrieved from Hawaiian and Andean volcanic soils. The novel diversity of these Icelandic microbial communities was supported by the finding that up to 46% of clones displayed <85% sequence identities to sequences currently deposited in the RDP database.  相似文献   

9.
Nearly half the earth's surface is occupied by dryland ecosystems, regions susceptible to reduced states of biological productivity caused by climate fluctuations. Of these regions, arid zones located at the interface between vegetated semiarid regions and biologically unproductive hyperarid zones are considered most vulnerable. The objective of this study was to conduct a deep diversity analysis of bacterial communities in unvegetated arid soils of the Atacama Desert, to characterize community structure and infer the functional potential of these communities based on observed phylogenetic associations. A 454-pyrotag analysis was conducted of three unvegetated arid sites located at the hyperarid-arid margin. The analysis revealed communities with unique bacterial diversity marked by high abundances of novel Actinobacteria and Chloroflexi and low levels of Acidobacteria and Proteobacteria, phyla that are dominant in many biomes. A 16S rRNA gene library of one site revealed the presence of clones with phylogenetic associations to chemoautotrophic taxa able to obtain energy through oxidation of nitrite, carbon monoxide, iron, or sulfur. Thus, soils at the hyperarid margin were found to harbor a wealth of novel bacteria and to support potentially viable communities with phylogenetic associations to non-phototrophic primary producers and bacteria capable of biogeochemical cycling.  相似文献   

10.
Colonies of the hydrocoral Millepora dichotoma along the Gulf of Eilat are exhibiting unusual tissue lesions in the form of white spots. The emergence and rapid establishment of these multifocal tissue lesions was the first of its kind reported in this region. A characterization of this morphological anomaly revealed bleached tissues with a significant presence of bacteria in the tissue lesion area. To ascertain possible differences in microbial biota between the lesion area and non-affected tissues, we characterized the bacterial diversity in the two areas of these hydrocorals. Both culture-independent (molecular) and culture-dependent assays showed a shift in bacterial community structure between the healthy and affected tissues. Several 16S rRNA gene sequences retrieved from the affected tissues matched sequences of bacterial clones belonging to Alphaproteobacteria and Bacteroidetes members previously associated with various diseases in scleractinian corals.  相似文献   

11.
In order to investigate the role of microbial community in aquatic ecology and biogeochemical cycles, the bacterial community in crab ponds was investigated and the effects of aeration and season on the bacterial community were also assessed. Total DNAs from the water samples were amplified with universal primers and the amplicons were then resolved by denaturing gradient gel electrophoresis. Bands from the resulting profiles were excised and sequenced. Cluster analysis of the resulting profiles showed that the microbial community was affected by aeration and season. The microbial community between the surface and bottom of the water was very similar. A total of fifteen bands were obtained in this study. Three of them were 91–99% similar to uncultured bacterium clones. Three were 95–99% similar to uncultured Verrucomicrobia bacteria. Three were 97–100% similar to Actinobacterium sp.. Two were similar to Candidatus Limnoluna rubra with similarity 96 and 99%, respectively. Four were 99% similar to Rhodococcus sp., 100% similar to Sporosarcina sp., 100% similar to Stenotrophomonas sp., and 98% similar to Hydrogenophaga sp., respectively. The concentrations of dissolved oxygen, total nitrogen, total phosphorous, nitrite, and ammonia and pH values were significantly affected by season while only the pH value and the concentrations of dissolved oxygen and total nitrogen were significantly affected by aeration.  相似文献   

12.
Bacteria are thought to be closely involved in the biogeochemical cycling of the nutrient elements in freshwater ecosystems. In contrast, little is known about the relationship between the bacterial community structure and the environmental factors. In order to investigate the spatial variety of bacteriplankton community structure in Lake Xuanwu (Nanjing, China) and the effects of water quality on the microbial community composition, denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analysis were carried out. Eight major factors of water quality such as total organic carbon, ammonium, nitrate, nitrite, total nitrogen, total phosphorus, dissolved oxygen and pH were measured in eight different samples. The significant differences of water characteristics among different sites were revealed by principal component analysis. Results of multidimensional scaling analysis demonstrated that lake water quality played a crucial role in bacterioplankton community composition. Canonical correspondence analysis was carried out to infer the relationship between environmental variables and bacterial community structure. An influence of total nitrogen, ammonium and pH on the bacterial community was observed. The sequencing analysis results of excised DGGE bands revealed that Bacteroidetes and Proteobacteria were the dominant bacterial groups in Lake Xuanwu.  相似文献   

13.
Faecal contamination is one of the major factors affecting biological water quality. In this study, we investigated microbial taxonomic diversity of faecally polluted lotic ecosystems in Norway. These ecosystems comprise tributaries of drinking water reservoirs with moderate and high faecal contamination levels, an urban creek exposed to extremely high faecal pollution and a rural creek that was the least faecally polluted. The faecal water contamination had both anthropogenic and zoogenic origins identified through quantitative microbial source tracking applying host-specific Bacteroidales 16S rRNA genetic markers. The microbial community composition revealed that Proteobacteria and Bacteroidetes (70–90% relative abundance) were the most dominant bacterial phyla, followed by Firmicutes, especially in waters exposed to anthropogenic faecal contamination. The core archaeal community consisted of Parvarchaeota (mainly in the tributaries of drinking water reservoirs) and Crenarchaeota (in the rural creek). The aquatic microbial diversity was substantially reduced in water with severe faecal contamination. In addition, the community compositions diverge between waters with dominant anthropogenic or zoogenic pollution origins. These findings present novel interpretations of the effect of anthropo-zoogenic faecal water contamination on microbial diversity in lotic ecosystems.  相似文献   

14.
Advances in microbial ecology research are more often than not limited by the capabilities of available methodologies. Aerobic autotrophic nitrification is one of the most important and well studied microbiological processes in terrestrial and aquatic ecosystems. We have developed and validated a microbial diagnostic microarray based on the ammonia-monooxygenase subunit A (amoA) gene, enabling the in-depth analysis of the community structure of bacterial and archaeal ammonia oxidisers. The amoA microarray has been successfully applied to analyse nitrifier diversity in marine, estuarine, soil and wastewater treatment plant environments. The microarray has moderate costs for labour and consumables and enables the analysis of hundreds of environmental DNA or RNA samples per week per person. The array has been thoroughly validated with a range of individual and complex targets (amoA clones and environmental samples, respectively), combined with parallel analysis using traditional sequencing methods. The moderate cost and high throughput of the microarray makes it possible to adequately address broader questions of the ecology of microbial ammonia oxidation requiring high sample numbers and high resolution of the community composition.  相似文献   

15.
High nitrogen losses were observed in a rotating biological contactor (RBC) treating ammonium-rich (up to 500 mg NH4(+)-N/L) but organic-carbon-poor leachate from a hazardous waste landfill in K?lliken, Switzerland. The composition and spatial structure of the microbial community in the biofilm on the RBC was analyzed with specific attention for the presence of aerobic ammonium and nitrite oxidizing bacteria and anaerobic ammonium oxidizers. Anaerobic ammonium oxidation (anammox) involves the oxidation of ammonium with nitrite to N2. First the diversity of the biofilm community was determined from sequencing cloned PCR-amplified 16S rDNA fragments. This revealed the presence of a number of very unusual 16S rDNA sequences, but very few sequences related to known ammonium or nitrite oxidizing bacteria. From analysis of biofilm samples by fluorescence in situ hybridization with known phylogenetic probes and by dot-blot hybridization of the same probes to total RNA purified from biofilm samples, the main groups of microorganisms constituting the biofilm were found to be ammonium-oxidizing bacteria from the Nitrosomonas europaea/eutropha group, anaerobic ammonium-oxidizing bacteria of the "Candidatus Kuenenia stuttgartiensis" type, filamentous bacteria from the phylum Bacteroidetes, and nitrite-oxidizing bacteria from the genus Nitrospira. Aerobic and anaerobic ammonium-oxidizing bacteria were present in similar amounts of around 20 to 30% of the biomass, whereas members of the CFB phylum were present at around 7%. Nitrite oxidizing bacteria were only present in relatively low amounts (less than 5% determined with fluorescence in situ hybridization). Data from 16S rRNA dot-blot and in situ hybridization were not in all cases congruent. FISH analysis of thin-sliced and fixed biofilm samples clearly showed that the aerobic nitrifiers were located at the top of the biofilm in an extremely high density and in alternating clusters. Anammox bacteria were exclusively present in the lower half of the biofilm, whereas CFB-type filamentous bacteria were present throughout the biofilm. The structure and composition of these biofilms correlated very nicely with the proposed physiological functional separations in ammonium conversion.  相似文献   

16.
Culture-based studies of the microbial community within the gut of the medicinal leech have typically been focused on various Aeromonas species, which were believed to be the sole symbiont of the leech digestive tract. In this study, analysis of 16S rRNA gene clone libraries confirmed the presence of Aeromonas veronii and revealed a second symbiont, clone PW3, a novel member of the Rikenellaceae, within the crop, a large compartment where ingested blood is stored prior to digestion. The diversity of the bacterial community in the leech intestinum was determined, and additional symbionts were detected, including members of the alpha-, gamma-, and delta-Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes. The relative abundances of the clones suggested that A. veronii and the novel clone, PW3, also dominate the intestinum community, while other clones, representing transient organisms, were typically present in low numbers. The identities of these transients varied greatly between individual leeches. Neither time after feeding nor feeding on defibrinated blood caused a change in identity of the dominant members of the microbial communities. Terminal restriction fragment length polymorphism analysis was used to verify that the results from the clone libraries were representative of a larger data set. The presence of a two-member bacterial community in the crop provides a unique opportunity to investigate both symbiont-symbiont and symbiont-host interactions in a natural model of digestive-tract associations.  相似文献   

17.
Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the "microbial loop." To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrodesmus falcatus or the cyanobacterium Oscillatoria limnetica in continuous-flow systems for 1 month. Denaturing gradient gel electrophoresis (DGGE) of the 16S and 18S rRNA genes was used to monitor the development of the bacterial community structure and the eukaryotic community structure, respectively. Nonmetric multidimensional scaling of the DGGE profiles revealed the changes in the microbial community structure. This analysis showed that significantly different bacterial communities developed on the green algal detritus and on the cyanobacterial detritus. Although similar results were obtained for the eukaryotic communities, the differences were not significant. Hence, our findings indicate that the origin of detritus can affect the structure of at least the bacterial community. A phylogenetic analysis of 20 18S ribosomal DNA clones that were isolated from the continuous cultures revealed that many sequences were related to the sequences of bacterivorous protozoans (members of the Ciliophora, Rhizopoda, Amoeba, and Kinetoplastida). One clone grouped in a recently established clade whose previously described members are all parasites. The affiliations of about 20% of the clones could not be determined.  相似文献   

18.
To investigate the effects of photosynthetic bacteria as additives on water quality, microbial community structure and diversity, a photosynthetic purple non-sulfur bacteria, Rhodopseudamonas palustris, was isolated and used to remove nitrogen in the aquaculture water. The results of water quality showed that the levels of ammonia nitrogen, nitrite nitrogen, total inorganic nitrogen and total nitrogen in the treatment group were significantly lower (p < 0.05) than the nitrogen levels of the controls in an extended range. A 454-pyrosequencing analysis revealed that at the level of phylum, Proteobacteria and Firmicutes were dominant in the control group respectively, compared to the dominance of the phyla Proteobacteria, Bacteroidetes and Actinobacteria in the treatment group. The relative abundance of phyla Bacteroidetes and Actinobacteria in treatment witnessed an increase than that in the control. The results also indicated that the treatment group enjoyed a higher microbial diversity than that of the control group. Based on the oxygen requirement and metabolism, the authors observed that the water supplementation with photosynthetic bacteria could significantly decrease (p < 0.05) the number of nitrite reducer and anaerobic bacteria. Therefore, the results suggested that adding photosynthetic bacteria to water improves the water quality as it changes the microbial community structure.  相似文献   

19.
The impact on the microbial community of long-term environmental exposure to metal and organic contamination was investigated. Twenty-four soil samples were collected along a transect dug in soils contaminated with road paint and paint solvents, mainly toluene. Chemical analysis along the transect revealed a range from high to low concentrations of metals (lead and chromium) and organic solvent compounds. Principal components analysis of microbial community structure based on denaturing gradient gel electrophoresis of the V3 region of the 16S rRNA gene and fatty acid methyl esters derived from phospholipids (phospholipid fatty acid analysis) showing samples with similar fingerprints also had similar contaminant concentrations. There was also a weak positive correlation between microbial biomass and the organic carbon concentration. Results indicated that microbial populations are present despite some extreme contaminant levels in this mixed-waste contaminated site. Nucleotide sequence determination of the 16S rRNA gene indicated the presence of phylogenetically diverse bacteria belonging to the α-, β-, γ-, and δ-Proteobacteria, the high and low G + C Gram-positive bacteria, green nonsulfur, OP8, and others that did not group within a described division. This indicates that soils contaminated with both heavy metals and hydrocarbons for several decades have undergone changes in community composition, but still contain a phylogenetically diverse group of bacteria (including novel phylotypes) that warrant further investigation.  相似文献   

20.
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the beta- and gamma-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号