首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Adenosine deaminase (ADA) is an important catabolic enzyme which converts adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA exists in two different isoenzymes, namely ADA1 and ADA2, whose balance in monocytes-macrophages seems to guarantee the homeostasis of adenine nucleosides. Modifications of the purine moiety or/and substitution of the sugar moiety of adenosine with aliphatic chains led to derivatives which are good ADA inhibitors.  相似文献   

2.
Adenosine deaminase (ADA; EC 3.5.4.4) activity is responsible for cleaving adenosine to inosine. In this study we described the biochemical properties of adenosine deamination in soluble and membrane fractions of zebrafish (Danio rerio) brain. The optimum pH for ADA activity was in the range of 6.0-7.0 in soluble fraction and reached 5.0 in brain membranes. A decrease of 31.3% on adenosine deamination in membranes was observed in the presence of 5 mM Zn(2+), which was prevented by 5 mM EDTA. The apparent K(m) values for adenosine deamination were 0.22+/-0.03 and 0.19+/-0.04 mM for soluble and membrane fractions, respectively. The apparent V(max) value for soluble ADA activity was 12.3+/-0.73 nmol NH(3) min(-1) mg(-1) of protein whereas V(max) value in brain membranes was 17.5+/-0.51 nmol NH(3) min(-1) mg(-1) of protein. Adenosine and 2'-deoxyadenosine were deaminated in higher rates when compared to guanine nucleosides in both fractions. Furthermore, a significant inhibition on adenosine deamination in both soluble and membrane fractions was observed in the presence of 0.1 mM of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The presence of ADA activity in zebrafish brain may be important to regulate the adenosine/inosine levels in the CNS of this species.  相似文献   

3.
Adenosine deaminase (ADA, EC 3.5.4.4) catalyses the irreversible deamination of adenosine and 2'-deoxyadenosine to inosine and 2'-deoxyinosine, respectively. In this study the inhibition of ADA from bovine spleen by several molecules with structure related to that of the substrate or product has been quantified. The inhibitors adenine, purine, inosine, 2-aminopurine, 4-aminopyrimidine, 4-aminopyridine, 4-hydroxypyridine and phenylhydrazine are shown to be competitive inhibitors with K(I) (mM) values of 0.17, 1.1, 0.35, 0.33, 1.3, 1.8, 1.4 and 0.25, respectively. Synergistic inhibition by various combinations of molecules that imitate the structure of the substrate has never been observed. Some general conclusions are: i) the enzyme ADA from bovine spleen we have used is appropriate for kinetic studies of inhibition and mechanistic studies; it can be a reference catalytic system for the homogeneous comparison of various inhibitors; ii) this enzyme presents very rigid requirements for binding the substrate: variations in the structure of adenosine imply the loss of important interactions.  相似文献   

4.
Adenosine deaminase (ADA, EC 3.5.4.4) catalyses the irreversible deamination of adenosine and 2′-deoxyadenosine to inosine and 2′-deoxyinosine, respectively. In this study the inhibition of ADA from bovine spleen by several molecules with structure related to that of the substrate or product has been quantified. The inhibitors adenine, purine, inosine, 2-aminopurine, 4-aminopyrimidine, 4-aminopyridine, 4-hydroxypyridine and phenylhydrazine are shown to be competitive inhibitors with KI (mM) values of 0.17, 1.1, 0.35, 0.33, 1.3, 1.8, 1.4 and 0.25, respectively. Synergistic inhibition by various combinations of molecules that imitate the structure of the substrate has never been observed. Some general conclusions are: i) the enzyme ADA from bovine spleen we have used is appropriate for kinetic studies of inhibition and mechanistic studies; it can be a reference catalytic system for the homogeneous comparison of various inhibitors; ii) this enzyme presents very rigid requirements for binding the substrate: variations in the structure of adenosine imply the loss of important interactions.  相似文献   

5.
Summary Erythrocyte acid phosphatase (ACP1) activity was determined in the absence of modulators and in the presence of either adenosine or inosine as modulators in 154 samples of red blood cells collected from adult donors. Adenosine and inosine showed modulating effects (activation), that were genotype dependent in the allele order pbac; the activation by inosine was much higher than by adenosine. The modulating effect was dependent on adenosine deaminase (ADA) genotype: In carriers of ADA2 allele the activation with ACP1 phenotype A was lower and that with phenotypes CA and CB was higher than in ADA1/ADA1 subjects. In addition, the basic ACP1 activity (i.e., without modulators) also appeared to be dependent on ADA genotype: The lowest ACP1 activity was observed in A and BA subjects carrying the ADA2 allele. Since the deamination of adenosine to inosine associated with ADA2-1 phenotype is slower than that associated with ADA1, the interaction of ADA on ACP1 activity may in fact be explained by a lower intracellular concentration of inosine in ADA2 carriers and, therefore, by a lower modulating effect of this on acid phosphatase activity.  相似文献   

6.
ADENOSINE inhibits platelet aggregation induced by adenosine diphosphate both in vivo and in vitro1,2. In platelet-rich plasma, inhibition by adenosine first increases and then decreases1–6, presumably because adenosine is either incorporated into the platelet and converted to nucleotides, or degraded in the plasma by adenosine deaminase (ADA) to inosine and then hypoxanthine6,7.  相似文献   

7.
In this work, the metabolism of adenosine by isolated BLM associated-enzymes and the implications of this process for the cAMP-signaling pathway are investigated. Inosine was identified as the major metabolic product, suggesting the presence of adenosine deaminase (ADA) activity in the BLM. This was confirmed by immunoblotting and ADA-specific enzyme assay. Implications for the enzymatic deamination of adenosine on the receptor-modulated cAMP-signaling pathway were also investigated. We observed that inosine induced a 2-fold increase in [35S] GTPγS binding to the BLM and it was inhibited by 10−6 M DPCPX, an A1 receptor-selective antagonist. Inosine (10−7 M) inhibited protein kinase A activity in a DPCPX-sensitive manner. Molecular association between ADA and Gαi-3 protein-coupled A1 receptor was demonstrated by co-immunoprecipitation assay. These data show that adenosine is deaminated by A1 receptor-associated ADA to inosine, which in turn modulates PKA in the BLM through A1 receptor-mediated inhibition of adenylyl cyclase.  相似文献   

8.
5-Methyluridine (5MU) was synthesized efficiently from adenosine, thymine, and phosphate by a combination of adenosine deaminase (ADA), purine nucleoside phosphorylase (PUNP), pyrimidine nucleoside phosphorylase (PYNP), and xanthine oxidase (XOD). Adenosine was converted into inosine first by ADA. 5MU and hypoxanthine were synthesized from inosine and thymine by PUNP and PYNP. The hypoxanthine formed was converted into urate via xanthine by XOD. After inosine was completely consumed, an equilibrium state, in which 5MU, thymine, ribose-1-phosphate, and phosphate were involved, was achieved. At the equilibrium state, the maximum yield of 5MU was obtained. The yield of 5MU was 74%, when the initial concentrations of adenosine, thymine, and phosphate were 5 mM each. On the other hand, in the absence of ADA or XOD the yield of 5MU was 1.8%. Several kinds of nucleosides were also synthesized with high yield by the same method.  相似文献   

9.
Rini D  Calabi F 《Gene》2001,267(1):13-22
Adenosine deaminase (ADA) catalyzes the hydrolysis of adenosine to inosine. Its lack determines severe combined immunodeficiency in mammals, possibly due to accumulation of extracellular adenosine, which induces apoptosis in lymphocytes (Franco et al., 1998). Thus, presence of normal levels of ADA leads to normal growth and proliferation of lymphocytes. Several vertebrate and microbial ADA amino-acid sequences are known, with substantial similarity to each other. On the other hand, there are invertebrate growth factors as well as a candidate gene for the human cat eye syndrome (CECR1) (Riazi et al., 2000. Genomics 64, 277-285), which share substantial similarity to each other, and also to ADA. In this study, we report the expression and ADA enzymatic activity of a cDNA from the salivary glands of Lutzomyia longipalpis, a blood-sucking insect, with substantial similarity to insect growth factors and to human CECR1. We also demonstrate the existence of a subfamily of the adenosine deaminase family characterized by their unique amino-terminal region. Both Drosophila melanogaster and humans have both types of adenosine deaminases. Results indicate that these invertebrate proteins previously annotated as growth factors, as well as the human CECR1 gene product, may exert their actions through adenosine depletion. The different roles played by each type of adenosine deaminase in humans and Drosophila remains to be fully investigated.  相似文献   

10.
New phenyl adenine compounds 5-7 were synthesized as analogues of adenosine and studied for their adenosine deaminase (ADA) substrate activity. The 9-[(o-hydroxymethyl)phenyl]methyl]adenine 5 and 9-[(m-hydroxymethyl)phenyl]adenine 7 were deaminated by ADA, and 9-[(o-hydroxyethyl)phenyl]adenine 6 was not deaminated up to 7 days. The ADA substrates 5 and 7 were deaminated quantitatively to their inosine analogues in 10 and 6h, respectively.  相似文献   

11.
12.
Adenosine is a multifaceted signaling molecule mediating key aspects of innate and immune lung defenses. However, abnormally high airway adenosine levels exacerbate inflammatory lung diseases. This study identifies the mechanisms regulating adenosine elimination from the apical surface of human airway epithelia. Experiments conducted on polarized primary cultures of nasal and bronchial epithelial cells showed that extracellular adenosine is eliminated by surface metabolism and cellular uptake. The conversion of adenosine to inosine was completely inhibited by the adenosine deaminase 1 (ADA1) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The reaction exhibited Km and Vmax values of 24 microM and 0.14 nmol x min(-1) x cm(-2). ADA1 (not ADA2) mRNA was detected in human airway epithelia. The adenosine/mannitol permeability coefficient ratio (18/1) indicated a minor contribution of paracellular absorption. Adenosine uptake was Na+-dependent and was inhibited by the concentrative nucleoside transporter (CNT) blocker phloridzin but not by the equilibrative nucleoside transporter (ENT) blocker dipyridamole. Apparent Km and Vmax values were 17 microM and 7.2 nmol x min(-1) x cm(-2), and transport selectivity was adenosine = inosine = uridine > guanosine = cytidine > thymidine. CNT3 mRNA was detected throughout the airways, while CNT2 was restricted to nasal epithelia. Inhibition of adenosine elimination by EHNA or phloridzin raised apical adenosine levels by >3-fold and stimulated IL-13 and MCP-1 secretion by 6-fold. These responses were reproduced by the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and blocked by the adenosine receptor antagonist, 8-(p-sulfophenyl) theophylline (8-SPT). This study shows that adenosine elimination on human airway epithelia is mediated by ADA1, CNT2, and CNT3, which constitute important regulators of adenosine-mediated inflammation.  相似文献   

13.
Extracellular adenosine, a key regulator of physiology and immune cell function that is found at elevated levels in neonatal blood, is generated by phosphohydrolysis of adenine nucleotides released from cells and catabolized by deamination to inosine. Generation of adenosine monophosphate (AMP) in blood is driven by cell-associated enzymes, whereas conversion of AMP to adenosine is largely mediated by soluble enzymes. The identities of the enzymes responsible for these activities in whole blood of neonates have been defined in this study and contrasted to adult blood. We demonstrate that soluble 5′-nucleotidase (5′-NT) and alkaline phosphatase (AP) mediate conversion of AMP to adenosine, whereas soluble adenosine deaminase (ADA) catabolizes adenosine to inosine. Newborn blood plasma demonstrates substantially higher adenosine-generating 5′-NT and AP activity and lower adenosine-metabolizing ADA activity than adult plasma. In addition to a role in soluble purine metabolism, abundant AP expressed on the surface of circulating neonatal neutrophils is the dominant AMPase on these cells. Plasma samples from infant observational cohorts reveal a relative plasma ADA deficiency at birth, followed by a gradual maturation of plasma ADA through infancy. The robust adenosine-generating capacity of neonates appears functionally relevant because supplementation with AMP inhibited whereas selective pharmacologic inhibition of 5′-NT enhanced Toll-like receptor-mediated TNF-α production in neonatal whole blood. Overall, we have characterized previously unrecognized age-dependent expression patterns of plasma purine-metabolizing enzymes that result in elevated plasma concentrations of anti-inflammatory adenosine in newborns. Targeted manipulation of purine-metabolizing enzymes may benefit this vulnerable population.  相似文献   

14.
JEG-3 is a human choriocarcinoma cell line characterized by low levels of adenosine deaminase expression. For the purpose of studying adenosine deaminase gene regulation in the JEG-3 cells, we attempted to select variant cells having increased adenosine deaminase expression. This was accomplished by selecting cells for resistance to the cytotoxic adenosine analogs 9-beta-D-arabinofuranosyl adenine (ara-A) or 9-beta-D-xylofuranosyl adenine (xyl-A), both of which could presumably be detoxified by the action of adenosine deaminase. Single step high dose selection was ineffective in obtaining cells with increased adenosine deaminase. However, multistep selection using either ara-A or xyl-A resulted in cell populations with increased adenosine deaminase activity. Removal of selective pressure resulted in decreased adenosine deaminase levels. Subclones of xyl-A-resistant cells belonged to one of three phenotypic classes characterized by either elevated adenosine deaminase levels, decreased adenosine kinase levels, or both of these features. One subclone (A3-1A7) with unaltered adenosine kinase expression showed a 20-fold increase in adenosine deaminase expression. Further selection of this subclone for increasing xyl-A resistance resulted in an additional 2-fold increase in adenosine deaminase expression, followed by loss of adenosine kinase expression. These adenosine kinase-deficient cells showed no subsequent increase in adenosine deaminase expression in response to further xyl-A selection pressure. These results confirmed that xyl-A toxicity was mediated through its phosphorylated form and indicated that resistance may result from increased adenosine deaminase levels and/or adenosine kinase deficiency. The increased adenosine deaminase expression of the A3-1A7 subclone was exclusively in the ADA 2 allelic form. However, cell fusion experiments between A3-1A7 cells and mouse C1-1D cells established the existence of functional copies of both ADA 1 and ADA 2 allelic genes in the A3-1A7 cells. The increased expression of only one of the two functional ADA alleles, the requirement for a stepwise selection protocol to obtain cells with increased adenosine deaminase, and the instability of the adenosine deaminase phenotype in the absence of selective pressure suggest that the alteration of adenosine deaminase phenotype in the drug-resistant cells was the result of adenosine deaminase gene amplification.  相似文献   

15.
A simple, rapid (2 hours), fluorescent test for the activity of blood adenosine deaminase (ADA) is described. The test which can be performed on both heparinized and dried blood, is based on the conversion of adenosine to inosine and ammonium in the presence of ADA. The enzyme activity is visually estimated by the oxidation of NADH (fluorescent) to NAD+ (non-fluorescent) in a coupled reaction with glutamate dehydrogenase. The disappearance of fluorescence indicates ADA activity in the sample. The advantages are discussed of the use of this test for the study of the autosomal recessive severe combined immunodeficiency.  相似文献   

16.
Adenosine deaminase isoenzyme 2 (ADA2) was isolated from human pleural fluid for the first time. Molecular and kinetic properties were characterized. It was shown that the inhibitors of adenosine deaminase isoenzyme 1 (ADA1), adenosine, and erithro-9-(2-hydroxy-3-nonyl)adenine (EHNA) derivatives are poor inhibitors of ADA2. Comparison of the interaction of ADA2 and ADA1 with adenosine and its derivative, 1-deazaadenosine, indicates that the isoenzymes have similar active centers. The absence of ADA2 inhibition by EHNA is evidence of a difference of these active centers in a close environment. The possible role of Zn2+ ions and the participation of acidic amino acids Glu and Asp in adenosine deamination catalyzed by ADA2 were shown.  相似文献   

17.
Measurement of adenosine deaminase (ADA) activity using spectrophotometric method presents problem, regarding the quantitative estimation of the substrate degradation and product formation, due to the closely apposed lambda(max) of the substrates, product and the inhibitor. The feasibility of applying reverse-phase HPLC technique, for studying adenosine deaminase-catalyzed reaction product and inhibition study was examined. We have drawn a comparison between the HPLC-based method over the corresponding spectrophotometric method. A gradient elution pattern was used to separate substrate (adenosine and deoxyadenosine), product (inosine and deoxyinosine) and standard adenosine deaminase inhibitor (erythro-9-(3-nonyl-p-aminobenzyl)-adenine) in the HPLC method. The product formation was quantitated by monitoring the absorbance at 260 nm with the progress of time. The limit of detection as well as the limit of quantification of the respective enzymatic product were found to be in nano molar (nM) range in the HPLC method. This study was also extended to monitor adenosine deaminase activity in different cancer cells of hematological origin. The HPLC-based method is found to be suitable for the quantitative estimation of adenosine deaminase-catalyzed reaction product and for studying inhibition mechanism of different inhibitors. The HPLC-based method has specific advantages over the spectrophotometric method. Moreover, the concentration of different nucleotides in cell lysate and body fluid can be measured using this HPLC method.  相似文献   

18.
We present a novel fluorescent aptasensor for simple and accurate detection of adenosine deaminase (ADA) activity and inhibition on the basis of graphene oxide (GO) using adenosine (AD) as the substrate. This aptasensor consists of a dye-labeled single-stranded AD specific aptamer, GO and AD. The fluorescence intensity of the dye-labeled AD specific aptamer is quenched very efficiently by GO as a result of strong π-π stacking interaction and excellent electronic transference of GO. In the presence of AD, the fluorescence of the GO-based probe is recovered since the competitive binding of AD and GO with the dye-labeled aptamer prevents the adsorption of dye-labeled aptamer on GO. When ADA was introduced to this GO-based probe solution, the fluorescence of the probe was quenched owing to ADA can convert AD into inosine which has no affinity to the dye-labeled aptamer, thus allowing quantitative investigation of ADA activity. The as-proposed sensor is highly selective and sensitive for the assay of ADA activity with a detection limit of 0.0129U/mL in clean buffer, which is more than one order of magnitude lower than the previous reports. Meanwhile, a good linear relationship with the correlation coefficient of R=0.9922 was obtained by testing 5% human serum containing a series of concentrations of ADA. Additionally, the inhibition effect of erythro-9-(2-hydroxy-3-nonyl) adenine on ADA activity was investigated in this design. The GO-based fluorescence aptasensor not only provides a simple, cost-effective and sensitive platform for the detection of ADA and its inhibitor but also shows great potential in the diagnosis of ADA-relevant diseases and drug development.  相似文献   

19.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

20.
Adenosine kinase is an enzyme catalyzing the reaction: adenosine + ATP --> AMP + ADP. We studied some biochemical properties not hitherto investigated and demonstrated that the reaction can be easily reversed when coupled with adenosine deaminase, which transforms adenosine into inosine and ammonia. The overall reaction is: AMP + ADP --> ATP + inosine + NH(3). The exoergonic ADA reaction shifts the equilibrium and fills the energy gap necessary for synthesis of ATP. This reaction could be used by cells under particular conditions of energy deficiency and, together with myokinase activity, may help to restore physiological ATP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号