首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In Ehrlich ascites cells and several other tumors, the high aerobic glycolysis is maintained by generation of ADP and Pi by the plasma membrane Na+K+ ATPase. The high ATP activity is caused by a defective pump that operates at a low efficiency. Studies of the mechanism of action of the Na+K+ ATPase and other pump ATPases suggest several alternative mechanisms that might account for the decreased efficiency. The possibility of involvement of a proteolipid is under investigation.  相似文献   

2.
The role of ATPase in glycolysis of Ehrlich ascites tumor cells   总被引:3,自引:0,他引:3  
Glycolysis in Ehrlich ascites tumor cells suspended in buffer containing 5 mM Pi was 50% inhibited by ouabain. In the absence of Pi the inhibition was less striking. Permeabilization of the cells with filipin abolished glycolysis, but glycolysis was restored by addition of Pi and AMP. Neither ouabain nor quercetin inhibited glycolysis in these permeabilized cells. We conclude that quercetin did not inhibit hexokinase sufficiently to affect glycolysis. An extract of Ehrlich ascites tumor cells glycolyzed weakly unless either Pi or an ATPase (e.g. (Na+K+)-ATPase) was added. The low rate of glycolysis of the extract was even further reduced when an endogenous ATPase was removed by precipitation with CaATP. The glycolytic activity of this ATPase-deficient extract was restored by addition of purified (Na+K+)-ATPase or of CaATP-precipitable ATPase. Addition of hexokinase without Pi did not restore glycolytic activity to the extract. An explanation for the contradictory conclusions by Bustamante, E., Morris, H.P., and Pedersen, P.L. (J. Biol. Chem. (1981) 265, 8699-8704) is presented.  相似文献   

3.
In several tissues a coupling between glycolysis and (Na+ + K+)-ATPase has been observed. We report here studies on the coupling of glycolysis and (Na+ + K+)-ATPase in Rous-transformed hamster cells and Ehrlich ascites tumor cells. The rate of (Na+ + K+)-ATPase was estimated by the initial rate of ouabain-sensitive K+ influx after K+ reintroduction to K+-depleted cells. Experiments were performed with cells producing ATP via oxidative phosphorylation alone (i.e., lactate sole substrate), glycolysis alone (i.e., glucose as substrate in the absence of oxygen or with antimycin A), or glycolysis and oxidative phosphorylation (i.e., glucose as substrate in the presence of oxygen). The cells produced ATP at approximately the same rate under all of these conditions, but the initial rate of K+-influx was approx. 2-fold higher when AtP was produced from glycolysis. Changes in cell Na+ due to other transport processes related to glycolysis, such as Na+-H+ exchange, Na+-glucose cotransport, and K+-H+ exchange were ruled out as mediators of this effect on (Na+ + K+)-ATPase. These data suggest that glycolysis is more effective than oxidative phosphorylation in providing ATP to (Na+ + K+)-ATPase to these cultured cells.  相似文献   

4.
We have shown previously that proteoliposomes reconstituted with purified Na+K+-ATPase from Ehrlich ascites tumor cells, transport Na+ with low efficiency (Spector, M., O'Neal, S. and Racker, E. (1980) J. Biol. Chem., 255, 5504-5507). We now present evidence that this low efficiency (expressed in the ratio of Na+-transported/ATP-hydrolyzed) is caused by the phosphorylation of the beta subunit of the Na+K+-ATPase by an endogenous protein kinase. On addition of [gamma-32P]ATP, crude tumor plasma membrane preparations phosphorylated the beta subunit of the ATPase, whereas crude mouse brain plasma membranes did not. However, solubilized Na+K+-ATPase from either tumor or brain wre phosphorylated by purified protein kinase from the tumor plasma membrane and dephosphorylated by a phosphatase. In both cases, the phosphorylated enzyme was inefficient; the dephosphorylated enzyme was efficient after reconstitution into liposomes. During isolation of the Na+K+-ATPase from Ehrlich ascites tumor or mouse brain, an endogenous protease partially cleaved from the beta subunit a polypeptide of 29,000 daltons that contained the phosphorylation site. The proteolytic cleavage of the beta subunit was partially inhibited by phenylmethylsulfonyl fluoride and the major site of phosphorylation was then seen in the 53,000-dalton beta subunit of the enzyme. The isolated 29,000-dalton polypeptide from mouse brain ATPase was phosphorylated by tumor protein kinase with a stoichiometry of 1 mol of phosphate/mol of protein. When this 29,000-dalton polypeptide from mouse brain was incorporated into the tumor Na+K+-ATPase after mild proteolytic digestion, a marked increase in efficiency was observed after reconstitution of the Na+ pump.  相似文献   

5.
A rapid isolation procedure of nucleoli from detergent purified nuclei of some tumor and tissue culture cells is described. The procedure makes use of a non-ionic detergent, Nonidet P40 and sodium deoxycholate to purify nuclei followed by the addition of Ca2+ or Mg2+ to strengthen the nucleoli against sonication. Enzymatically active (with respect to nucleolar RNA polymerase) nucleoli containing undegraded nucleolar RNAs may be isolated from a mouse hepatoma MH134, Ehrlich ascites tumor, HeLa cells, L cells and C3H2K cells with this procedure.  相似文献   

6.
The interaction of quinine with K+ and Na+ transport mechanisms has been investigated in Ehrlich ascites tumor cells. Quinine affects both Ca2+-dependent K+ channel and total K+ influx. Activation of Ca+-dependent K+ channels by propranolol is abolished by quinine (1 mM). In addition, quinine inhibits the ouabain-sensitive component of K+ influx with an apparent Ki of 0.32 +/- 0.02 mM and the furosemide-sensitive component with a Ki of 0.24 +/- 0.01 mM. Furthermore, a significant fraction (52%) of Na+ influx is inhibited by quinine. The same component is sensitive to amiloride, suggesting that it represents Na+/H+ antiport. Concomitant with the inhibition of K+ and Na+ transport, quinine stimulates ATP hydrolysis by 57%. The results suggest that quinine exerts broad, nonspecific effects on cellular mechanisms which serve to regulate cation transport in Ehrlich cells.  相似文献   

7.
Ouabain uptake was studied on isolated rat hepatocytes. Hepatocellular uptake of the glycoside is saturable (Km = 348 mumol/l, Vmax = 1.4 nmol/mg cell protein per min), energy dependent and accumulative. Concentrative ouabain uptake is not present on permeable hepatocytes, Ehrlich ascites tumor cells and AS-30D ascites hepatoma cells. There is no correlation between ouabain binding to rat liver (Na+ + K+)ATPase and ouabain uptake into isolated rat hepatocytes. While ouabain uptake is competitively inhibited by cevadine, binding to (Na+ + K+)-ATPase is not affected by the alkaloid. Although the affinities of digitoxin and ouabain to (Na+ + K+)-ATPase are similar, digitoxin is 10000-times more potent in inhibiting [3H]ouabain uptake as compared to ouabain. That binding to (Na+ + K+)-ATPase appears to be no precondition for ouabain uptake was also found in experiments with plasmamembranes derived from Ehrlich ascites tumor cells and AS-30D hepatoma cells. While tumor cell (Na+ + K+)-ATPase is ouabain sensitive, the intact cells are transport deficient. Hepatic ouabain uptake might be related to bile acid transport. Several inhibitors of the bile acid uptake system also inhibit ouabain uptake.  相似文献   

8.
A simple method of analytical subcellular fractionation, combined with a sensitive computational method for data analysis and presentation, has been used to reinvestigate the distribution and relative amounts of several enzymes in the cytoplasmic and plasma membranes of two different cell types: one is a neoplastic, transformed cell type (Ehrlich ascites tumour cells), the other an untransformed, highly differentiated cell type (liver hepatocytes plus Kupffer and endothelial cells). In general the distribution of the enzymes in particular membranes is similar in the two cell types, however the relative amounts differ. Ehrlich ascites tumour cells have a higher specific activity of galactosyltransferase and ouabain-sensitive (Na,K)ATPase, while liver cells have higher glucose-6-phosphatase, 5'-nucleotidase and succinate dehydrogenase activity. These differences appear to be correlated with morphological and, in some cases, functional differences between the two cell types.  相似文献   

9.
A method is described for the extraction of microsomal ouabain-sensitive (a- + K+)-activated ATPase from separated frog skin epithelium. The method yields a microsomal fraction containing (Na+ K+)-stimulated activity in the range of 30- 40 nmol - mg -1 - min -1 at 26 degrees C. This portion which is also ouabain sensitive, is about half of the total activity in media containing Mg2+, Na+ and K+. These preparations also contain Mg2+-dependent or Ca2+-dependent activities which are not additive and which are not significantly affected by ouabain, Na+, K+ or Li+. The activations of the ouabain-sensitive ATPase activity by Mg2+, Na+, and K+ are similar to those described in other tissues. It is found that Li+ does not substitute for Na+ as an activator but in high concentrations does produce partial activation in the presence of Na+ with no K+. These results are pertinent to the reported observations of ouabain-sensitive Li+ flux across frog skin. It is concluded that this flux is not apparently due to a direct activating effect of Li+ on the sodium pump.  相似文献   

10.
Ouabain inhibited 86RbCl uptake by 80% in rabbit gastric superficial epithelial cells (SEC), revealing the presence of a functional Na+,K+-ATPase [(Na+ + K+)-transporting ATPase] pump. Intact SEC were used to study the ouabain-sensitive Na+,K+-ATPase and K+-pNPPase (K+-stimulated p-nitrophenyl phosphatase) activities before and after lysis. Intact SEC showed no Na+,K+-ATPase and insignificant Mg2+-ATPase activity. However, appreciable K+-pNPPase activity sensitive to ouabain inhibition was demonstrated by localizing its activity to the cell-surface exterior. The lysed SEC, on the other hand, demonstrated both ouabain-sensitive Na+,K+-ATPase and K+-pNPPase activities. Thus the ATP-hydrolytic site of Na+,K+-ATPase faces exclusively the cytosol, whereas the associated K+-pNPPase is distributed equally across the plasma membrane. The study suggests that the cell-exterior-located K+-pNPPase can be used as a convenient and reliable 'in situ' marker for the functional Na+,K+-ATPase system of various isolated cells under noninvasive conditions.  相似文献   

11.
Bioflavonoids are potent inhibitors of lactate transport in Ehrlich ascites tumor cells. The most effective bioflavonoids have four to five hydroxyl groups. Sugar substitution at carbon three, or reduction of the double bond between carbons two and three, decreases their inhibitory activity. Quercetin, the most extensively studied of these compounds, inhibits lactate efflux by 50% at 0.1 micrograms/mg of protein. On addition of quercetin to glycolyzing Ehrlich ascites tumor cells, lactate accumulates inside the cell and the intracellular pH drops. Total lactate production is also inhibited. Nigericin prevents the internal acidification that occurs in the presence of quercetin and also reduces the inhibition of glycolysis. Thus, it appears that inhibition of lactate efflux can affect glycolysis through a lowering of the intracellular pH. The inhibitory effect of quercetin on glycolysis can be explained by its effect on lactate efflux and its previously reported effect on the Na+--K+ ATPase [Suolinna, E.--M., et al. (1974) J. Natl. Cancer Inst. 53, 1515].  相似文献   

12.
Unindirectional potassium influx and the fraction of this influx sensitive to ouabain, an inhibitor of the (Na + K) activated ATPase, have been evaluated as a function of subcultivation of the 3T3 and SV40 transformed 3T3 cell. Total and ouabain-sensitive K influx change little over approximately 50 passages of the transformed 3T3 cell. In contrast, these components of K influx increase nearly 5-fold over a similar number of passages of the 3T3 cell. During early passages total and ouabain-sensitive K influx of the 3T3 cell are below that of the SV40 3T3 cell on a per cell volume basis. At later passages the magnitude of these components of K transport exceed those found in the SV40 3T3 cell. Previous studies have reported the ouabain-sensitive uptake of K and the levels of (Na + K) activated ATPase as being higher, lower or equivalent in the 3T3 versus transformed 3T3 cell. The present data suggest these differences may results from the degree to which the cells were passaged at the time of the experiments. Evaluation of previous studies substantiates this conclusion.  相似文献   

13.
Enterocyte has two different Na+-stimulated ATPases, the ouabain-sensitive Na+/K+ ATPase and a furosemide-inhibitable Na+ ATPase. To identify the polypeptide associated with the Na+-ATPase, 32Pi phosphorylation into basolateral membranes of enterocyte was investigated. Both, ouabain and furosemide induced Mg2+-dependent, vanadate-sensitive 32Pi incorporation into a 100kDa polypeptide. K(m) for Pi was 17.7+/-1.82 microM and 16.8+/-0.69 microM for ouabain-induced and furosemide-induced phosphorylation, respectively. K(m) for furosemide was 1.3+/-0.21 mM. Furosemide-induced 32Pi incorporation was sensitive to alkaline pH and hydroxylamine suggesting an acyl-phosphate bond. Na+ and K+ inhibited 32Pi incorporation induced by ouabain. In contrast, Na+ stimulated furosemide-induced phosphorylation with a K(m) of 16.5+/-5.59 mM while K+ had no effect. Purified Na+/K+ ATPase only presented ouabain-induced phosphoprotein, indicating that furosemide-induced phosphorylation is not related to this enzyme and appears to correspond to a new member of P-type ATPases associated with the second Na+ pump.  相似文献   

14.
Effects of various inhibitors on motility, heat, and lactate production of ejaculated bovine sperm were determined in the presence of antimycin A and rotenone. erythro-9-[3-(2-Hydroxynonyl)]adenine (EHNA) and polyvinylpyrrolidone (PVP-360) stopped motility and reduced heat or lactate production by 30-50%. Carbodiimides resulted in loss of motility and a reduction of metabolism by 60-75%. Quercetin treatment, which enhanced rather than inhibited motility, depressed heat and lactate production by 50-60%. Since mechanical immobilization reduced heat production by only 30%, the question arises as to what other cellular processes are major contributors to the energy budget. Inhibitors of ion flux had little-to-no effect on heat or lactate production, suggesting that neither mitochondrial nor Na+/K+ ATPases were major ATP-requiring processes. Calcium flux at the plasma membrane also was minimal and previous reports eliminated glycolytic substrate cycling as major consuming processes for ATP. Although quercetin inhibited lactate production in intact cells, no effect of quercetin on cell-free glycolysis and the ATPase activities of isolated dynein was detected. Quercetin did, however, inhibit ATPase activity of plasma membrane, suggesting that this unidentified ATPase may contribute to the formation of ADP and Pi required for lactate production by the intact cell. We propose (a) that the bioenergetic costs of motility are divided between regulatory events and dynein-microtubule interaction (dynein ATPase), (b) that some of the membrane-related processes may be "inefficient," and (c) that quercetin may render these steps more "efficient," in a manner analogous to its action on the Na+/K+ pump of Ehrlich ascites tumor cells.  相似文献   

15.
Angiotensin peptides (AI, AII, AIII) increased the rate of Na+ accumulation by smooth muscle cells (SMC) cultured from rat aorta. The stimulatory effect of AII on Na+ uptake was observed when Na+ exodus via the Na+/K+ pump was blocked either by ouabain or by the removal of extracellular K+. AII was at least ten times more potent than AIII and about 100 times more potent than AI in stimulating Na+ uptake. Saralasin had little effect on Na+ uptake by itself but almost completely blocked the increase caused by AII. The stimulation of net Na+ entry by AI, but not AII, was prevented by protease inhibitors. The stimulation of Na+ uptake was almost completely blocked by amiloride. Tetrodotoxin, which prevented veratridine from increasing Na+ uptake, had no effect on the response to AII. Angiotensin increased the rate of ouabain-sensitive 86Rb+ uptake (Na+/K+ pump activity) but had no effect on ouabain-sensitive ATPase activity in frozen-thawed SMC or in microsomal membranes isolated from cultured SMC. The stimulation of ouabain-sensitive 86Rb+ uptake by AII was blocked by saralasin. Omitting Na+ from the external medium prevented AII from increasing 86Rb+ uptake. AII had no effect on cell volume or cyclic AMP levels in the cultured SMC. These results suggest that angiotensin peptides activate an amiloride-sensitive Na+ transporter which supplies the Na+/K+ pump with more Na+, its rate-limiting substrate.  相似文献   

16.
The Ehrlich ascites tumor cell has been used as a model of an unspecialized mammalian cell, in an attempt to disclose the mechanisms involved in the regulation of cellular water and salt content. In hypotonic medium Ehrlich cells initially swell as nearly perfect osmometers, but subsequently recover their volume within about 10 min with an associated net loss of KCl, amino acids, taurine and cell water. The net loss of KCl takes place mainly via separate, conductive K+ and Cl- transport pathways, and the net loss of taurine through a passive leak pathway. Ca2+ and calmodulin appear to be involved in the activation of the K+ and Cl- channels, as well as the taurine leak pathway. In hypertonic medium Ehrlich cells initially shrink as osmometers, but subsequently recover their volume with an associated net uptake of KCl and water. In this case, the net uptake of KCl is the result of the activation of an electroneutral, Na+- and Cl- -dependent cotransport system with subsequent replacement of cellular Na+ by extracellular K+ via the Na+/K+ pump. In the present review we describe the ion and taurine transporting systems which have been identified in the plasma membrane of the Ehrlich ascites tumor cell. We have emphasized the selectivity of these transport pathways and their activation mechanisms. Finally, we propose a model for the activation of the conductive K+ and Cl- transport pathways in Ehrlich cells which includes Ca2+, leukotrienes, and inositol phosphate as intracellular second messengers.  相似文献   

17.
MDCK kidney epithelial cell cultures exposed to the differentiation inducer hexamethylene bisacetamide (HMBA) for 24 hours exhibited a 50% decrease in transport activity per (Na+,K+)-ATPase molecule (turnover number) but an unchanged number of pump sites (Kennedy and Lever, 1984). Inhibition of protein synthesis by either 10 microM cycloheximide or 2 microM emetine blocked the inhibitory effects of HMBA on Na+/K+ pump efficiency assessed by measurements of [3H]-ouabain binding to intact cells, (Na+,K+) ATPase activity of detergent-activated cell extracts, and ouabain-sensitive Rb+ uptake. In the absence of inducer treatment, inhibition of protein synthesis increased Na+/K+ pump turnover number by twofold while maintaining Na+/K+ pump activity per cell at a constant level. Intracellular Na+ levels were decreased after cycloheximide treatment; therefore, pump stimulation was not due to substrate effects. Furthermore, cycloheximide effects of Rb+ uptake could be dissociated from effects on tight junctions. These observations suggest that the transport activity of the (Na+,K+) ATPase is tightly regulated by factors dependent on protein synthesis.  相似文献   

18.
The fatty acid composition of plasma membrane derived from Ehrlich ascites tumor cells was altered in vivo by changing the dietary lipid of the tumor-bearing mice. The activity of (sodium + potassium)-adenosinetriphosphatase ((Na+ + K+ATPase), in partially purified plasma membranes, was measured ass a function of temperature. Arrhenius plots of the data were biphasic. Striking differences, dependent on the membrane fatty acid composition, were observed in the transition temperature and in the energies of activation below the transition temperature. The transition temperatures for the (Na+ + K+)-ATPase of plasma membrane derived from tumor cells grown in mice fed a regular chow diet containing a mixture of fatty acids (PMC), a 16% sunflower oil diet (PMSU), or a 4% tristearin diet (PMTS) were 20, 21, and 13.5 degrees C, respectively...  相似文献   

19.
The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests that, at the [K+]e normally present in brain, 3.3-4 mM, the pump is near saturation with this cation. Depolarization with 6-40 mM KCl had negligible effect on ouabain-sensitive O2 uptake indicating that at the voltages involved the activity of the Na/K ATPase is largely independent of membrane potential. Increases in [Na+]i by addition of veratridine markedly enhanced glycoside-inhibitable respiration and lactate production. Calculations of the rates of ATP synthesis necessary to support the operation of the pump showed that greater than 90% of the energy was derived from oxidative phosphorylation. Consistent with this: (a) the ouabain-sensitive Rb/O2 ratio was close to 12 (i.e., Rb/ATP ratio of 2); (b) inhibition of mitochondrial ATP synthesis by Amytal resulted in a decrease in the glycoside-dependent rate of 86Rb uptake. Analyses of the mechanisms responsible for activation of the energy-producing pathways during enhanced Na and K movements indicate that glycolysis is predominantly stimulated by increase in activity of phosphofructokinase mediated via a rise in the concentrations of adenosine monophosphate [AMP] and inorganic phosphate [Pi] and a fall in the concentration of phosphocreatine [PCr]; the main moving force for the elevation in mitochondrial ATP generation is the decline in [ATP]/[ADP] [Pi] (or equivalent) and consequent readjustments in the ratio of the intramitochondrial pyridine nucleotides [( NAD]m/[NADH]m). Direct stimulation of pyruvate dehydrogenase by calcium appears to be of secondary importance. It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.  相似文献   

20.
The cation-transporting activity and Na,K-ATPase activity of CV-1 cell recipients of the mouse ouabain resistance gene (ouaR6, or OR6 cells; see Levenson, R., Racaniello, V., Albritton, L., and Housman, D. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1489-1493) have been further characterized. OR6 cells grown in strophanthidin (a cardiac aglycon which may be removed rapidly from the Na,K-ATPase) possess both ouabain-sensitive and -insensitive 86Rb+ uptake activities. The ouabain-sensitive 86Rb+ uptake activity of these cells (OR6-S cells) exhibits the same Ki for ouabain as that of the CV-1 parent cells (Ki(app) = 3 x 10(-7) M ouabain), but accounts for only approximately 30% of total 86Rb+ uptake into Na+-loaded OR6-S cells, compared to 80% for CV-1 cells. Most of the ouabain-resistant 86Rb+ uptake in OR6-S cells is dependent on internal Na+ and is insensitive to furosemide, suggesting that it is due to an ouabain-resistant Na,K pump. In OR6-S cell lysates, 50% of Na+-dependent ATPase activity is insensitive to 1 mM ouabain, compared to less than 5% in CV-1 cell lysates. In addition, purified plasma membranes from OR6-S cells contain a 100-kDa protein which is transiently phosphorylated by ATP in an Na+-dependent, K+-sensitive manner, like the alpha subunit of the CV-1 Na,K-ATPase and the canine renal Na,K-ATPase, but which is unaffected by preincubation in 1 mM ouabain. All of these data suggest that OR6-S cells possess a ouabain-insensitive Na,K pump with characteristics similar to the ouabain-sensitive pump of CV-1 parent cells. Since the mouse ouabain resistance gene does not encode either subunit of the Na,K-ATPase, these results suggest that the ouabain resistance gene product may modify the ouabain sensitivity of the endogenous CV-1 Na,K pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号