首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huntington''s disease (HD), a neurodegenerative disease characterized by progressive dementia, psychiatric problems, and chorea, is known to be caused by CAG repeat expansions in the HD gene HTT. However, the mechanism of this pathology is not fully understood. The translesion DNA polymerase θ (Polθ) carries a large insertion sequence in its catalytic domain, which has been shown to allow DNA loop-outs in the primer strand. As a result of high levels of oxidative DNA damage in neural cells and Polθ''s subsequent involvement in base excision repair of oxidative DNA damage, we hypothesized that Polθ contributes to CAG repeat expansion while repairing oxidative damage within HTT. Here, we performed Polθ-catalyzed in vitro DNA synthesis using various CAG•CTG repeat DNA substrates that are similar to base excision repair intermediates. We show that Polθ efficiently extends (CAG)n•(CTG)n hairpin primers, resulting in hairpin retention and repeat expansion. Polθ also triggers repeat expansions to pass the threshold for HD when the DNA template contains 35 repeats upward. Strikingly, Polθ depleted of the catalytic insertion fails to induce repeat expansions regardless of primers and templates used, indicating that the insertion sequence is responsible for Polθ''s error-causing activity. In addition, the level of chromatin-bound Polθ in HD cells is significantly higher than in non-HD cells and exactly correlates with the degree of CAG repeat expansion, implying Polθ''s involvement in triplet repeat instability. Therefore, we have identified Polθ as a potent factor that promotes CAG•CTG repeat expansions in HD and other neurodegenerative disorders.  相似文献   

2.
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanneal to form duplexes. Here additional evidence is presented that is consistent with the existence of S-DNA structures. We demonstrate that S-DNA structures can form between two complementary strands containing equal numbers of repeats. In addition, we show that both the propensity for S-DNA formation and the structural complexity of S-DNAs formed increase with increasing repeat length. S-DNA structures were also analyzed by electron microscopy, confirming that the two strands are slipped out of register with respect to each other and confirming the structural polymorphism expected within long tracts of trinucleotide repeats. For (CTG)50.(CAG)50 two distinct populations of slipped structures have been identified: those involving </=10 repeats per slippage, which appear as bent/kinked DNA molecules, and those involving >10 repeats, which have multiple loops or hairpins indicative of complex alternative DNA secondary structures.  相似文献   

3.
Expansion of CAG/CTG trinucleotide repeats causes certain familial neurological disorders. Hairpin formation in the nascent strand during DNA synthesis is considered a major path for CAG/CTG repeat expansion. However, the underlying mechanism is unclear. We show here that removal or retention of a nascent strand hairpin during DNA synthesis depends on hairpin structures and types of DNA polymerases. Polymerase (pol) δ alone removes the 3′-slipped hairpin using its 3′-5′ proofreading activity when the hairpin contains no immediate 3′ complementary sequences. However, in the presence of pol β, pol δ preferentially facilitates hairpin retention regardless of hairpin structures. In this reaction, pol β incorporates several nucleotides to the hairpin 3′-end, which serves as an effective primer for the continuous DNA synthesis by pol δ, thereby leading to hairpin retention and repeat expansion. These findings strongly suggest that coordinated processing of 3′-slipped (CAG)n/(CTG)n hairpins by polymerases δ and β on during DNA synthesis induces CAG/CTG repeat expansions.  相似文献   

4.
Polymorphic microsatellite repeats in the promoter region of estrogen receptor α gene (ESRα and the intron 6 region of estrogen receptor β gene (ESRβ) have been reported in human populations. To examine the evolutional state of both repeats, we surveyed the corresponding regions in DNA sequences from the following great apes and gibbons: 56 chimpanzees, 3 bonobos, 16 gorillas, 20 orangutans and 60 gibbons (four species: 17 of Hylobates agilis, 11 of H. lar, 15 of H. muelleri, and 17 of H. syndactylus). In the corresponding region of the TA repeat of human ESRα, chimpanzees and bonobos had two motifs in the repeat tract, (TA)7–9 and (CA)4–6. Gorillas had the (TA)9–10 repeat tracts and orangutans had monomorphic (TA)7 repeats. Although all great apes maintained the TA expansion, all gibbon sequences contained (TA)2, implying that the CA dinucleotide expansion arose in the ancestor of chimpanzees and bonobos. The nucleotide sequences of ESRβ showed a very complex repeat pattern in apes. The human sequences had a non-variable preceding sequence at (CA) n , (GA)2(TA)8(CA)4(TA). In apes that region included {(TA) n (CA) n } n . Gibbon sequences included (TATG) n and (TATC) n and no regular construction was observed. A deletion event in the reverse primer site seems to have occurred in the orangutan lineage. In addition, a great diversity of allele length was detected in each gibbon species.  相似文献   

5.
Electrophoretic mobility shift assays reveal that HeLa neuclear proteins bind fast and with measurable affinity to target DNAs containing mixed simple repetitive (gt)n(ga)m stretches. Preincubation of the proteins at elevated temperature prevents the formation of the major DNA/protein complex in favour of several distinct assemblies. A similar pattern of retarded bands was observed employing higher salt concentrations in binding reaction. Thus conformational changes of different proteins appear to influence the complex rather than alternating DNA structures. Separation of the total nuclear extract into a water soluble and an insoluble protein fraction leads to a complete loss of target DNA bindinlg capability of the fractions. The binding capacity is restored by combining the two fractions suggesting that at least two protein components are necessary to form a complex with the target sequence. The proteins can be differentiated into head sensitive, water soluble and temporary stable, water insoluble, respectively. Furthermore, specifically binding polypeptides are not detectable by Southwestern analyses, probably because the essential components are separated during electrophoresis. DNase 1 footpoint analyses yield four different protein binding regions only on the (gt)n(ga)m harbouring strand. The footprints cover larger portions of the mixed simple repeat in addition to a portion 5′ of the (gt)n part. Hence at lealst two nuclear protein components of unknown biological function have to be present simultaneously to protect preferentially the (gt)n(ga)m-containing strand intron 2 in HLA-DRB genes  相似文献   

6.
The expansion of trinucleotide repeat tracts (e.g. (CAG)n tracts) has been shown to contribute to genomic instability and has been implicated in the pathogenesis of several neurodegenerative diseases, including Huntington’s Disease and Fragile X syndrome (Kovtun et al., 2008). While the molecular mechanism of this expansion is unknown, the ability of trinucleotide repeat sequences to form non-canonical secondary structures, such as hairpins, has been implicated as a multifaceted source of error (Gacy et al., 1995). Non-canonical DNA secondary structures have been shown to impact the action of enzymes in the base excision repair (BER) pathway, by which oxidatively damaged bases are removed. More specifically, there is evidence that trinucleotide repeat-containing DNA mistakenly enters long-patch BER, which can potentially lead to the incorporation of extra nucleobases by DNA polymerase (Jarem et al., 2011). The final enzyme in the BER pathway is DNA Ligase, which catalyses the formation of a phosphodiester bond to seal a nick site (Taylor et al., 2011). When extra nucleotides have been added during an erroneous long-patch BER process, the action of DNA ligase may expand the repeat tract by incorporating these additional bases into duplex DNA. In this study, DNA constructs containing (CAG)n hairpins at various distances from a nick site are used to investigate the ability of DNA Ligase to ligate substrates containing non-canonical secondary structure back into duplex DNA.  相似文献   

7.
 Although there has been progress in developing artificial hydrolytic DNA cleaving agents, none of these has been shown to carry out the double-strand hydrolysis of DNA. We demonstrate that La(III) or Ce(IV) combined with the ligand 1,3-diamino-2-hydroxypropane-N,N,N′,N′-tetraacetate (HPTA) in a 2 : 1 ratio can efficiently cleave supercoiled plasmid DNA at 55  °C within a 3-h period. Analysis of end-labeled restriction fragments cleaved by these complexes reveals 3′- and 5′-ends consistent with a hydrolytic mechanism. Unlike for other polydentate carboxylate complexes, plasmid DNA cleavage by La2(HPTA) or Ce2(HPTA) affords a significant amount of linear DNA with a considerable fraction of the supercoiled form still remaining. This result implies that La2(HPTA) and Ce2(HPTA) can carry out double-strand cleavage of plasmid DNA. La2(HPTA) and Ce2(HPTA) represent the first metal complexes demonstrated to be capable of double-strand hydrolytic cleavage of plasmid DNA. Received: 29 March 1999 / Accepted: 9 July 1999  相似文献   

8.
Trinucleotide repeat expansion provides a molecular basis for several devastating neurodegenerative diseases. In particular, expansion of a CAG run in the human HTT gene causes Huntington’s disease. One of the main reasons for triplet repeat expansion in somatic cells is base excision repair (BER), involving damaged base excision and repair DNA synthesis that may be accompanied by expansion of the repaired strand due to formation of noncanonical DNA structures. We have analyzed the kinetics of excision of a ubiquitously found oxidized purine base, 8-oxoguanine (oxoG), by DNA glycosylase OGG1 from the substrates containing a CAG run flanked by AT-rich sequences. The values of k 2 rate constant for the removal of oxoG from triplets in the middle of the run were higher than for oxoG at the flanks of the run. The value of k 3 rate constant dropped starting from the third CAG-triplet in the run and remained stable until the 3′-terminal triplet, where it decreased even more. In nuclear extracts, the profile of oxoG removal rate along the run resembled the profile of k 2 constant, suggesting that the reaction rate in the extracts is limited by base excision. The fully reconstituted BER was efficient with all substrates unless oxoG was near the 3′-flank of the run, interfering with the initiation of the repair. DNA polymerase β was able to perform a strand-displacement DNA synthesis, which may be important for CAG run expansion initiated by BER.  相似文献   

9.
Survey of plant short tandem DNA repeats   总被引:46,自引:0,他引:46  
Length variations in simple sequence tandem repeats are being given increased attention in plant genetics. Some short tandem repeats (STRs) from a few plant species, mainly those at the dinucleotide level, have been demonstrated to show polymorphisms and Mendelian inheritance. In the study reported here a search for all of the possible STRs ranging from mononucleotide up to tetranucleotide repeats was carried out on EMBL and GenBank DNA sequence databases of 3026 kb nuclear DNA and 1268 kb organelle DNA in 54 and 28 plant species (plus algae), respectively. An extreme rareness of STRs (4 STRs in 1268 kb DNA) was detected in organelle compared with nuclear DNA sequences. In nuclear DNA sequences, (AT)n sequences were the most abundant followed by (A)n · (T)n, (AG)n · (CT)n, (AAT)n · (ATT)n, (AAC)n · (GTT), (AGC)n · (GCT)n, (AAG)n · (CTT)n, (AATT)n · (TTAA)n, (AAAT)n · (ATTT)n and (AC)n · (GT)n sequences. A total of 130 STRs were found, including 49 (AT)n sequences in 31 species, giving an average of 1 STR every 23.3 kb and 1 (AT)n STR every 62 kb. An abundance comparable to that for the dinucleotide repeat was observed for the tri- and tetranucleotide repeats together. On average, there was 1 STR every 64.6 kb DNA in monocotyledons versus 1 every 21.2 kb DNA in dicotyledons. The fraction of STRs that contained G-C basepairs increased as the G+C contents went up from dicotyledons, monocotyledons to algae. While STRs of mono-, di- and tetranucleotide repeats were all located in non coding regions, 57% of the trinucleotide STRs containing G-C basepairs resided in coding regions.  相似文献   

10.

Background

Expansion of the C9orf72 hexanucleotide repeat (GGGGCC)n·(GGCCCC)n is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both strands of the C9orf72 repeat have been shown to form unusual DNA and RNA structures that are thought to be involved in mutagenesis and/or pathogenesis. We previously showed that the C-rich DNA strands from the C9orf72 repeat can form four-stranded quadruplexes at neutral pH. The cytosine residues become protonated under slightly acidic pH (pH?4.5–6.2), facilitating the formation of intercalated i-motif structures.

Methods

Using CD spectroscopy, UV melting, and gel electrophoresis, we demonstrate a pH-induced structural transition of the C-rich DNA strand of the C9orf72 repeat at pHs reported to exist in living cells under stress, including during neurodegeneration and cancer.

Results

We show that the repeats with lengths of 4, 6, and 8?units, form intercalated quadruplex i-motifs at low pH (pH?<?5) and monomolecular hairpins and monomolecular quadruplexes under neutral-basic conditions (pH?≥?8). Furthermore, we show that the human replication protein A (RPA) binds to the G-rich and C-rich DNA strands under acidic conditions, suggesting that it can bind to i-motif structures.

Conclusions

In the proper sequence context, i-motif structures can form at pH values found in some cells in vivo.

General significance

DNA conformational plasticity exists over broad range of solution conditions.  相似文献   

11.
More than 15 human genetic diseases have been associated with the expansion of trinucleotide DNA repeats, which may involve the formation of non-duplex DNA structures. The slipped-strand nucleation of duplex DNA within GC-rich trinucleotide repeats may result in the changes of repeat length; however, such a mechanism seems less likely for the AT-rich (GAA)n·(TTC)n repeats. Using two-dimensional agarose gels, chemical probing and atomic force microscopy, we characterized the formation of non-B-DNA structures in the Friedreich ataxia-associated (GAA)n·(TTC)n repeats from the FRDA gene that were cloned with flanking genomic sequences into plasmids. For the normal genomic repeat length (n = 9) our data are consistent with the formation of a very stable protonated intramolecular triplex (H-DNA). Its stability at pH 7.4 is likely due to the high proportion of the T·A·T triads which form within the repeats as well as in the immediately adjacent AT-rich sequences with a homopurine· homopyrimidine bias. At the long normal repeat length (n = 23), a family of H-DNAs of slightly different sizes has been detected. At the premutation repeat length (n = 42) and higher negative supercoiling, the formation of a single H-DNA structure becomes less favorable and the data are consistent with the formation of a bi-triplex structure.  相似文献   

12.
The linking difference, α, imposed upon a superhelically constrained DNA molecule must be partitioned between twisting and bending deformations. Transitions to alternative secondary structures can occur at susceptible sites, altering the local molecular twist by an amount ΔTw trans. That part of the linking difference not accommodated in this way, the residual linking difference αres, must be manifested as smooth torsional and flexural deformations of secondary structure. The competition among the alternative ways of accommodating the imposed linking difference α determines a stressed equilibrium state. The superhelical free energy,G(α), is the excess free energy of the equilibrium state at linking difference α above that of the relaxed state under identical conditions. In this paper a method is described by which the free energies associated both to linking,G(α), and to residual linking differences can be determined from data on superhelical conformational transitions. The application of this approach to previously published experimental data on the B-Z transition suggests that the free energy associated with αres is about 30% larger at substantial superhelicities than it is near the relaxed state. At the onset of transition the functional form ofG(α) is shown to change in a manner dependent upon the length of the Z-susceptible site.  相似文献   

13.
UV absorption and CD spectroscopy, along with polyacrylamide gel electrophoresis, were used to study conformational properties of DNA fragments containing the trinucleotide repeat (GCC)n (n = 4, 8 or 16), whose expansion is correlated with the fragile X chromosome syndrome. We have found that the conformational spectrum of the (GCC)n strand is wider than has been shown so far. (GCC)n strands adopt the hairpin described in the literature under a wide range of salt concentrations, but only at alkaline (>7.5) pH values. However, at neutral and slightly acid pH (GCC)4 and (GCC)8 strands homodimerize. Our data suggest that the homodimer is a bimolecular tetraplex formed by two parallel-oriented hairpins held together by hemi-protonated intermolecular C·C+ pairs. The (GCC)16 strand forms the same tetraplex intramolecularly. We further show that below pH 5 (GCC)n strands generate intercalated cytosine tetraplexes, whose molecularity depends on DNA strand length. They are tetramolecular with (GCC)4, bimolecular with (GCC)8 and monomolecular with (GCC)16. i-Tetraplex formation is a complex and slow process. The neutral tetraplex, on the other hand, arises with fast kinetics under physiological conditions. Thus it is a conformational alternative of the (GCC)n strand duplex with a complementary (GGC)n strand.  相似文献   

14.
Using synthetic DNA constructs in vitro, we find that human DNA polymerase beta effectively catalyzes CAG/CTG triplet repeat expansions by slippage initiated at nicks or 1-base gaps within short (14 triplet) repeat tracts in DNA duplexes under physiological conditions. In the same constructs, Escherichia coli DNA polymerase I Klenow Fragment exo(-) is much less effective in expanding repeats, because its much stronger strand displacement activity inhibits slippage by enabling rapid extension through two downstream repeats into flanking non-repeat sequence. Polymerase beta expansions of CAG/CTG repeats, observed over a 32-min period at rates of approximately 1 triplet added per min, reveal significant effects of break type (nick versus gap), strand composition (CTG versus CAG), and dNTP substrate concentration, on repeat expansions at strand breaks. At physiological substrate concentrations (1-10 microm of each dNTP), polymerase beta expands triplet repeats with the help of weak strand displacement limited to the two downstream triplet repeats in our constructs. Such weak strand displacement activity in DNA repair at strand breaks may enable short tracts of repeats to be converted into longer, increasingly mutable ones associated with neurological diseases.  相似文献   

15.
Human flap endonuclease 1 (h-FEN1) mutations have dramatic effects on repeat instability. Current models for repeat expansion predict that h-FEN1 protein prevents mutations by removing 5'-flaps generated at ends of Okazaki fragments by strand displacement synthesis. The models propose that hairpin formations within flaps containing repeats enable them to escape h-FEN1 cleavage. Friedreich's ataxia is caused by expansion mutations in a d(GAA)n repeat tract. Single-stranded d(GAA)n repeat tracts, however, do not form stable hairpins until the repeat tracts are quite long. Therefore, to understand how d(GAA)n repeat expansions survive h-FEN1 activity, we determined the effects of h-FEN1 on d(GAA)n repeat expansion during replication of a d(TTC)n repeat template. Replication initiated within the repeat tract generated significant expansion that was suppressed by the addition of h-FEN1 at the start of replication. The ability of h-FEN1 to suppress expansion implies that DNA slippage generates a 5'-flap in the nascent strand independent of strand displacement synthesis by an upstream polymerase. Delaying the addition of h-FEN1 to the replication reaction abolished the ability of h-FEN1 ability to suppress d(GAA)n repeat expansion products of all sizes, including sizes unable to hairpin. Use of model substrates demonstrated that h-FEN1 cleaves d(GAA)n 5'-flaps joined to double-stranded nonrepeat sequences but not those joined to double-stranded repeat tracts. The results provide evidence that, given the opportunity, short d(GAA)n repeat expansion products rearrange from 5'-flaps to stable internal loops inside the repeat tract. Long expansion products are predicted to form hairpinned flaps and internal loops. Once formed, these DNA conformations resist h-FEN1. The biological implications of the results are discussed.  相似文献   

16.
Fragile X syndrome is caused by expansion of a d(CGG) trinucleotide repeat sequence in the 5′ untranslated region of the first exon of the FMR1 gene. Repeat expansion is thought to be instigated by formation of d(CGG)n secondary structures. Stable FMR1 d(CGG)n runs in normal individuals consist of 6–52 d(CGG) repeats that are interrupted every 9–11 triplets by a single d(AGG) trinucleotide. By contrast, individuals having fragile X syndrome premutation or full mutation present >54–200 or >200–2000 monotonous d(CGG) repeats, respectively. Here we show that the presence of interspersed d(AGG) triplets diminished in vitro formation of bimolecular tetrahelical structures of d(CGG)18 oligomers. Tetraplex structures formed by d(CGG)n oligomers containing d(AGG) interspersions had lower thermal stability. In addition, tetraplex structures of d(CGG)18 oligomers interspersed by d(AGG) triplets were unwound by human Werner syndrome DNA helicase at rates and to an extent that exceeded the unwinding of tetraplex form consisting of monotonous d(CGG)18. Diminished formation and stability of tetraplex structures of d(AGG)-containing FMR1 d(CGG)2–50 tracts might restrict their expansion in normal individuals.  相似文献   

17.
A genomic cosmid library was used to develop seven highly polymorphic microsatellite markers for the Mexican spotted owl (Strix occidentalis lucida). These are the first reported microsatellite markers derived from this species. The cloned and sequenced repeat motifs include a triplet repeat of (AAT)n, two tetranucleotide repeats of (GATA)n, a tetranucleotide repeat of (ATCC)n, a compound repeat of (GA)n(GATA)n and the two pentanucleotide repeats (AGAAT)n and (ATTTT)n. The microsatellites described represent six presumably independent loci with the two pentanucleotide repeats having originated from a single cosmid. Primer pairs allow locus‐specific amplification of each marker from Mexican spotted owl genomic DNA.  相似文献   

18.
Secondary structures of the G-rich strand of human telomere DNA fragments G3(TTAG3)n, n = 1–16, have been studied by means of circular dichroism spectroscopy and PAGE, in solutions of physiological potassium cation concentrations. It has been found that folding of these fragments into tetraplexes as well as tetraplex thermostabilities and enthalpy values depend on the number of TTAG3 repeats. The suggested topologies include, e.g. antiparallel and parallel bimolecular tetraplexes, an intramolecular antiparallel tetraplex, a tetraplex consisting of three parallel chains and one antiparallel chain, a poorly stable parallel intramolecular tetraplex, and both parallel and antiparallel tetramolecular tetraplexes. G3(TTAG3)3 folds into a single, stable and very compact intramolecular antiparallel tetraplex. With an increasing repeat number, the fragment tetraplexes surprisingly are ever less thermostable and their migration and enthalpy decrease indicate increasing irregularities or domain splitting in their arrangements. Reduced stability and different topology of lengthy telomeric tails could contribute to the stepwise telomere shortening process.  相似文献   

19.
We performed PCR of many DNA fragments of 6-32 nucleotides in length. Some of the fragments expanded into kilobase lengths even in the absence of the complementary strand. The dramatic expansion was observed for (CA)8, (TG)8, (CA)4, (CA)6, (CA)12, (TG)4, (TG)6, (TG)12, (TC)10, (GA)10 and other single strands. Similar expansions were exhibited by related trinucleotide repeats (TTG)5, (CAA)5, (TGG)5, and (CCA)5 as well. However even small perturbations of the strict repetitive nature of the DNA primary structure substantially reduced the expansions. The expansion products had properties characteristic for normal Watson-Crick duplexes. Hence either the Taq polymerase and/or other components of the PCR buffer promote homoduplex formation of the non-selfcomplementary fragments, which is necessary to prime the synthesis of the complementary DNA strand, or the Taq polymerase is able to copy the single-stranded DNA template without any priming effect. The present observations have implications for the evolution of genomic DNA, microsatellite length polymorphism as well as the pathological expansions of trinucleotide repeats in the human genome.  相似文献   

20.
Using circular dichroism spectroscopy, UV absorption spectroscopy and polyacrylamide gel electrophoresis, we studied conformational properties of guanine-rich DNA strands of the fragile X chromosome repeats d(GGC)n, d(GCG)n and d(CGG)n, with n = 2, 4, 8 and 16. These strands are generally considered in the literature to form guanine tetraplexes responsible for the repeat expansion. However, we show in this paper that the repeats are reluctant to form tetraplexes. At physiological concentrations of either Na+ or K+ ions, the hexamers and dodecamers associate to form homoduplexes and the longer repeats generate homoduplexes and hairpins. The tetraplexes are rarely observed being relatively most stable with d(GGC)n and least stable with d(GCG)n. The tetraplexes are exclusively formed in the presence of K+ ions, at salt concentrations higher than physiological, more easily at higher than physiological temperatures, and they arise with extremely long kinetics (even days). Moreover, the capability to form tetraplexes sharply diminishes with the oligonucleotide length. These facts make the concept of the tetraplex appearance in this motif in vivo very improbable. Rather, a hairpin of the fragile X repeats, whose stability increases with the repeat length, is the probable structure responsible for the repeat expansion in genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号