首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

2.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

3.
A subunit of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) of 64 kD is described, Toc64. Toc64 copurifies on sucrose density gradients with the isolated Toc complex. Furthermore, it can be cross-linked in intact chloroplasts to a high molecular weight complex containing both Toc and Tic subunits and a precursor protein. The 0 A cross-linker CuCl(2) yields the reversible formation of disulfide bridge(s) between Toc64 and the established Toc complex subunits in purified outer envelope membranes. Toc64 contains three tetratricopeptide repeat motifs that are exposed at the chloroplast cytosol interface. We propose that Toc64 functions early in preprotein translocation, maybe as a docking protein for cytosolic cofactors of the protein import into chloroplasts.  相似文献   

4.
The protein import translocon at the inner envelope of chloroplasts (Tic complex) is a heteroligomeric multisubunit complex. Here, we describe Tic40 from pea as a new component of this complex. Tic40 from pea is a homologue of a protein described earlier from Brassica napus as Cim/Com44 or the Toc36 subunit of the translocon at the outer envelope of chloroplasts, respectively (Wu, C., Seibert, F. S., and Ko, K. (1994) J. Biol. Chem. 269, 32264-32271; Ko, K., Budd, D., Wu, C., Seibert, F., Kourtz, L., and Ko, Z. W. (1995) J. Biol. Chem. 270, 28601-28608; Pang, P., Meathrel, K., and Ko, K. (1997) J. Biol. Chem. 272, 25623-25627). Tic40 can be covalently connected to Tic110 by the formation of a disulfide bridge under oxidizing conditions, indicating its close physical proximity to an established translocon component. The Tic40 protein is synthesized in the cytosol as a precursor with an N-terminal cleavable chloroplast targeting signal and imported into the organelle via the general import pathway. Immunoblotting and immunogold-labeling studies exclusively confine Tic40 to the chloroplastic inner envelope, in which it is anchored by a single putative transmembrane span.  相似文献   

5.
Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC–TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN‐PAGE) system to detect and resolve megadalton (MD)‐sized complexes. Using this optimized system, the outer‐membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880‐kD TOC complex and a previously undetected 1‐MD complex. Two‐dimensional BN‐PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880‐kD to 1.3‐MD region. During active preprotein import, preproteins were transported mostly through the 1‐MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody‐shift assays showed that the 1‐MD complex is a TOC–TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25‐MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC–TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures.  相似文献   

6.
A Caliebe  R Grimm  G Kaiser  J Lübeck  J Soll    L Heins 《The EMBO journal》1997,16(24):7342-7350
Transport of precursor proteins across the chloroplastic envelope membranes requires the interaction of protein translocons localized in both the outer and inner envelope membranes. Analysis by blue native gel electrophoresis revealed that the translocon of the inner envelope membranes consisted of at least six proteins with molecular weights of 36, 45, 52, 60, 100 and 110 kDa, respectively. Tic110 and ClpC, identified as components of the protein import apparatus of the inner envelope membrane, were prominent constituents of this complex. The amino acid sequence of the 52 kDa protein, deduced from the cDNA, contains a predicted Rieske-type iron-sulfur cluster and a mononuclear iron-binding site. Diethylpyrocarbonate, a Rieske-type protein-modifying reagent, inhibits the translocation of precursor protein across the inner envelope membrane, whereas binding of the precursor to the outer envelope membrane is still possible. In another independent experimental approach, the 52 kDa protein could be co-purified with a trapped precursor protein in association with the chloroplast protein translocon subunits Toc86, Toc75, Toc34 and Tic110. Together, these results strongly suggest that the 52 kDa protein, named Tic55 due to its calculated molecular weight, is a member of the chloroplastic inner envelope protein translocon.  相似文献   

7.
The import of protein into chloroplasts is mediated by translocon components located in the chloroplast outer (the Toc proteins) and inner (the Tic proteins) envelope membranes. To identify intermediate steps during active import, we used sucrose density gradient centrifugation and blue-native polyacrylamide gel electrophoresis (BN-PAGE) to identify complexes of translocon components associated with precursor proteins under active import conditions instead of arrested binding conditions. Importing precursor proteins in solubilized chloroplast membranes formed a two-peak distribution in the sucrose density gradient. The heavier peak was in a similar position as the previously reported Tic/Toc supercomplex and was too large to be analyzed by BN-PAGE. The BN-PAGE analyses of the lighter peak revealed that precursors accumulated in at least two complexes. The first complex migrated at a position close to the ferritin dimer (approximately 880 kDa) and contained only the Toc components. Kinetic analyses suggested that this Toc complex represented an earlier step in the import process than the Tic/Toc supercomplex. The second complex in the lighter peak migrated at the position of the ferritin trimer (approximately 1320 kDa). It contained, in addition to the Toc components, Tic110, Hsp93, and an hsp70 homolog, but not Tic40. Two different precursor proteins were shown to associate with the same complexes. Processed mature proteins first appeared in the membranes at the same fractions as the Tic/Toc supercomplex, suggesting that processing of transit peptides occurs while precursors are still associated with the supercomplex.  相似文献   

8.
We have investigated the interactions of two nuclear-encoded preproteins with the chloroplast protein import machinery at three stages in import using a label-transfer crosslinking approach. During energy-independent binding at the outer envelope membrane, preproteins interact with three known components of the outer membrane translocon complex, Toc34, Toc75, and Toc86. Although Toc75 and Toc86 are known to associate with preproteins during import, a role for Toc34 in preprotein binding previously had not been observed. The interaction of Toc34 with preproteins is regulated by the binding, but not hydrolysis of GTP. These data provide the first evidence for a direct role for Toc34 in import, and provide insights into the function of GTP as a regulator of preprotein recognition. Toc75 and Toc86 are the major targets of cross-linking upon insertion of preproteins across the outer envelope membrane, supporting the proposal that both proteins function in translocation at the outer membrane as well as preprotein recognition. The inner membrane proteins, Tic(21) and Tic22, and a previously unidentified protein of 14 kD are the major targets of crosslinking during the late stages in import. These data provide additional support for the roles of these components during protein translocation across the inner membrane. Our results suggest a defined sequence of molecular interactions that result in the transport of nuclear-encoded preproteins from the cytoplasm into the stroma of chloroplasts.  相似文献   

9.
胥华伟  侯典云 《植物学报》2018,53(2):264-275
植物细胞中叶绿体的功能主要依赖于叶绿体蛋白, 大部分叶绿体蛋白由核基因组编码, 在细胞质中合成并经过正确的分选后, 通过叶绿体外膜上的Toc复合体和/或内膜上的Tic复合体转运到叶绿体的不同部位。该文主要综述可能参与叶绿体蛋白分选的胞质因子以及Toc和Tic组分如何参与叶绿体蛋白转运的研究进展。  相似文献   

10.
The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.  相似文献   

11.
The evolutionary process that transformed a cyanobacterial endosymbiont into contemporary plastids involved not only inheritance but also invention. Because gram-negative bacteria lack a system for polypeptide import, the envelope translocon complex of the general protein import pathway was the most important invention of organelle evolution resulting in a pathway to import back into plastids those nuclear-encoded proteins supplemented with a transit peptide. Genome information of cyanobacteria, phylogenetically diverse plastids, and the nuclei of the first red alga, a diatom, and Arabidopsis thaliana allows us to trace back the evolutionary origin of the twelve currently known translocon components and to partly deduce their assembly sequence. Development of the envelope translocon was initiated by recruitment of a cyanobacterial homolog of the protein-import channel Toc75, which belongs to a ubiquitous and essential family of Omp85/D15 outer membrane proteins of gram-negative bacteria that mediate biogenesis of beta-barrel proteins. Likewise, three other translocon subunits (Tic20, Tic22, and Tic55) and several stromal chaperones have been inherited from the ancestral cyanobacterium and modified to take over the novel function of precursor import. Most of the remaining subunits seem to be of eukaryotic origin, recruited from pre-existing nuclear genes. The next subunits that joined the evolving protein import complex likely were Toc34 and Tic110, as indicated by the presence of homologous genes in the red alga Cyanidioschyzon merolae, followed by the stromal processing peptidase, members of the Toc159 receptor family, Toc64, Tic40, and finally some regulatory redox components (Tic62, Tic32), all of which were probably required to increase specificity and efficiency of precursor import.  相似文献   

12.
The majority of chloroplast proteins is nuclear-encoded and therefore synthesized on cytosolic ribosomes. In order to enter the chloroplast, these proteins have to cross the double-membrane surrounding the organelle. This is achieved by means of two hetero-oligomeric protein complexes in the outer and inner envelope, the Toc and Tic translocon. The process of chloroplast import is highly regulated on both sides of the envelope membranes. Our studies indicate the existence of an undescribed mode of control for this process so far, at the same time providing further evidence that the chloroplast is integrated into the calcium-signalling network of the cell. In pea chloroplasts, the calmodulin inhibitor Ophiobolin A as well as the calcium ionophores A23187 and Ionomycin affect the translocation of those chloroplast proteins that are imported with an N-terminal cleavable presequence. Import of these proteins is inhibited in a concentration-dependent manner. Addition of external calmodulin or calcium can counter the effect of these inhibitors. Translocation of chloroplast proteins that do not possess a cleavable transit peptide, that is outer envelope proteins or the inner envelope protein Tic32, is not affected. These results suggest that the import of a certain subset of chloroplast proteins is regulated by calcium. Our studies furthermore indicate that this regulation occurs downstream of the Toc translocon either within the intermembrane space or at the inner envelope translocon. A potential promoter of the calcium regulation is calmodulin, a protein well known as part of the plant's calcium signalling system.  相似文献   

13.
The evolutionary process that transformed a cyanobacterial endosymbiont into contemporary plastids involved not only inheritance but also invention. Because Gram-negative bacteria lack a system for polypeptide import, the envelope translocon complex of the general protein import pathway was the most important invention of organelle evolution resulting in a pathway to import back into plastids those nuclear-encoded proteins supplemented with a transit peptide. Genome information of cyanobacteria, phylogenetically diverse plastids, and the nuclei of the first red alga, a diatom, and Arabidopsis thaliana allows us to trace back the evolutionary origin of the twelve currently known translocon components and to partly deduce their assembly sequence. Development of the envelope translocon was initiated by recruitment of a cyanobacterial homolog of the protein-import channel Toc75, which belongs to a ubiquitous and essential family of Omp85/D15 outer membrane proteins of Gram-negative bacteria that mediate biogenesis of β-barrel proteins. Likewise, three other translocon subunits (Tic20, Tic22, and Tic55) and several stromal chaperones have been inherited from the ancestral cyanobacterium and modified to take over the novel function of precursor import. Most of the remaining subunits seem to be of eukaryotic origin, recruited from pre-existing nuclear genes. The next subunits that joined the evolving protein import complex likely were Toc34 and Tic110, as indicated by the presence of homologous genes in the red alga Cyanidioschyzon merolae, followed by the stromal processing peptidase, members of the Toc159 receptor family, Toc64, Tic40, and finally some regulatory redox components (Tic62, Tic32), all of which were probably required to increase specificity and efficiency of precursor import.  相似文献   

14.
A Toc75-like protein import channel is abundant in chloroplasts   总被引:9,自引:0,他引:9       下载免费PDF全文
Chloroplasts import post-translationally most of their constituent polypeptides via two distinct translocon units located in the outer and inner envelope. The protein import channel of the translocon of the outer envelope of chloroplasts, Toc75, is the most abundant protein in that membrane. We identify a novel Toc75 homologous protein, atToc75-V, a prominent protein that is clearly localized in the chloroplastic outer envelope. Phylogenetic analysis indicates that Toc75-V is more closely related to its prokaryotic ancestors than to Toc75 from plants. The presence of a second translocation channel suggests that alternative, previously unrecognized import routes into chloroplasts might exist.  相似文献   

15.
Translocation of proteins across membranes is essential for the biogenesis of each cell and is achieved by proteinaceous complexes. We analyzed the translocation complex of the intermembrane space from chloroplasts and identified a 12-kDa protein associated with the Toc machinery. Toc12 is an outer envelope protein exposing a soluble domain into the intermembrane space. Toc12 contains a J-domain and stimulates the ATPase activity of DnaK. The conformational stability and the ability to stimulate Hsp70 are dependent on a disulfide bridge within the loop region of the J-domain, suggesting a redox-regulated activation of the chaperone. Toc12 is associated with Toc64 and Tic22. Its J-domain recruits the Hsp70 of outer envelope membrane to the intermembrane space translocon and facilitates its interaction to the preprotein.  相似文献   

16.
Chloroplast protein import across the inner envelope is facilitated by the translocon of the inner envelope of chloroplasts (Tic). Here we have identified Tic32 as a novel subunit of the Tic complex. Tic32 can be purified from solubilized inner envelope membranes by chromatography on Tic110 containing affinity matrix. Co-immunoprecipitation experiments using either Tic32 or Tic110 antisera indicated a tight association between these polypeptides as well as with other Tic subunits, e.g. Tic40, Tic22, or Tic62, whereas the outer envelope protein Toc75 was not found in this complex. Chemical cross-linking suggests that Tic32 is involved late in the overall translocation process, because both the precursor form as well as the mature form of Rubisco small subunit can be detected. We were unable to isolate Arabidopsis null mutants of the attic32 gene, indicating that Tic32 is essential for viability. Deletion of the attic32 gene resulted in early seed abortion because the embryo was unable to differentiate from the heart stage to the torpedo stage. The homology of Tic32 to short-chain dehydrogenases suggests a dual role of Tic32 in import, one as a regulatory component and one as an important subunit in the assembly of the entire complex.  相似文献   

17.
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.  相似文献   

18.
Protein import into chloroplasts involves redox-regulated proteins   总被引:13,自引:0,他引:13  
Pre-protein translocation into chloroplasts is accomplished by two distinct translocation machineries in the outer and inner envelope, respectively. We have isolated the translocon at the inner envelope membrane (Tic complex) by blue-native PAGE and describe a new Tic subunit, Tic62. Tic62, together with Tic110 and Tic55, forms a core translocation unit. The N-terminus of Tic62 shows strong homologies to NAD(H) dehydrogenases in eukaryotes and to Ycf39-like proteins present in cyanobacteria and non-green algae. The stromal-facing C-terminus of Tic62 contains a novel, repetitive module that interacts with a ferredoxin-NAD(P)(+) oxidoreductase. Ferredoxin-NAD(P)(+) oxidoreductase catalyses the final electron transfer of oxygenic photosynthesis from ferredoxin to NAD(P). Substrates that interfere with either NAD binding, such as deamino-NAD, or influence the ratio of NAD(P)/NAD(P)H, such as ruthenium hexamine trichloride, modulate the import characteristics of leaf-specific ferredoxin-NAD(P)(+) oxidoreductase isologues differently. We conclude that the Tic complex can regulate protein import into chloroplasts by sensing and reacting to the redox state of the organelle.  相似文献   

19.
Two components of the chloroplast envelope, Tic20 and Tic22, were previously identified as candidates for components of the general protein import machinery by their ability to covalently cross-link to nuclear-encoded preproteins trapped at an intermediate stage in import across the envelope (Kouranov, A., and D.J. Schnell. 1997. J. Cell Biol. 139:1677–1685). We have determined the primary structures of Tic20 and Tic22 and investigated their localization and association within the chloroplast envelope. Tic20 is a 20-kD integral membrane component of the inner envelope membrane. In contrast, Tic22 is a 22-kD protein that is located in the intermembrane space between the outer and inner envelope membranes and is peripherally associated with the outer face of the inner membrane. Tic20, Tic22, and a third inner membrane import component, Tic110, associate with import components of the outer envelope membrane. Preprotein import intermediates quantitatively associate with this outer/inner membrane supercomplex, providing evidence that the complex corresponds to envelope contact sites that mediate direct transport of preproteins from the cytoplasm to the stromal compartment. On the basis of these results, we propose that Tic20 and Tic22 are core components of the protein translocon of the inner envelope membrane of chloroplasts.  相似文献   

20.
Tu SL  Chen LJ  Smith MD  Su YS  Schnell DJ  Li HM 《The Plant cell》2004,16(8):2078-2088
Most chloroplast outer-membrane proteins are synthesized at their mature size without cleavable targeting signals. Their insertion into the outer membrane is insensitive to thermolysin pretreatment of chloroplasts and does not require ATP. It has therefore been assumed that insertion of outer-membrane proteins proceeds through a different pathway from import into the interior of chloroplasts, which requires a thermolysin-sensitive translocon complex and ATP. Here, we show that a model outer-membrane protein, OEP14, competed with the import of a chloroplast interior protein, indicating that the two import pathways partially overlapped. Cross-linking studies showed that, during insertion, OEP14 was associated with Toc75, a thermolysin-resistant component of the outer-membrane protein-conducting channel that mediates the import of interior-targeted precursor proteins. Whereas almost no OEP14 inserted into protein-free liposomes, OEP14 inserted into proteoliposomes containing reconstituted Toc75 with a high efficiency. Taken together, our data indicate that Toc75 mediates OEP14 insertion, and therefore plays a dual role in the targeting of proteins to the outer envelope membrane and interior of chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号