首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of thiazole derivatives 121 were prepared, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23 ± 0.03 and 424.41 ± 0.94 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Compound (8) (IC50, 18.23 ± 0.03 μM) and compound (7) (IC50 = 36.75 ± 0.05 μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25 ± 0.12 μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.  相似文献   

2.
One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 2.36–9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC50 values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC50 values of 7.44–19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC50 values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC50 values and free binding energy values of the synthesized compounds docked into the active site of the enzymes.  相似文献   

3.
Spirocyclopropane- and spiroazetidine-substituted tetracycles 13DE and 16A are described as orally active MK2 inhibitors. The spiroazetidine derivatives are potent MK2 inhibitors with IC50 <3 nM and inhibit the release of TNFα (IC50<0.3 μM) from hPBMCs and hsp27 phosphorylation in anisomycin stimulated THP-1 cells. The spirocyclopropane analogues are less potent against MK2 (IC50 = 0.05–0.23 μM), less potent in cells (IC50 <1.1 μM), but show good oral absorption. Compound 13E (100 mg/kg po; bid) showed oral activity in rAIA and mCIA, with significant reduction of swelling and histological score.  相似文献   

4.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

5.
The discovery, synthesis, and preliminary structure–activity relationship (SAR) of a novel class of vasopressin V3 (V1b) receptor antagonists is described. Compound 1, identified by high throughput screening of a diverse, three million-member compound collection, prepared using ECLiPS? technology, had good activity in a V3 binding assay (IC50 = 0.20 μM), but less than desirable physicochemical properties. Optimization of compound 1 yielded potent analogs 19 (IC50 = 0.31 μM) and 24 (IC50 = 0.12 μM) with improved drug-like characteristics.  相似文献   

6.
A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC50 0.59 μM) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC50 70 nM) and 84 (IC50 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC50 of 80 μM. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC50 1.7 μM and 0.27 μM, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.  相似文献   

7.
In vitro ADME characterization of the lead compound 1 identified for visceral leishmaniasis was undertaken and further structural analogs were synthesized for antileishmanial screening. Compound 1 was highly permeable in intestinal PAMPA model (31 × 10−6 cm/s) and was moderately bound to mouse and human plasma proteins (% bound 85–95%), its blood to plasma concentration ratio was less than 1, but the compound was unstable in blood. Compound 1 was found to have no CYP450 liability with CYP2C9, 2C19, 2D6 and 3A4. It showed inhibition with CYP1A2 with an IC50 value of 0.50 μM. Analogs of 1 were synthesized and subsequently characterized for in vitro activity against the intracellular form of Leishmania donovani. Resulting quinolines were found to have similar efficacy as 1 against the parasite. Compounds 8b and 8f were found to be the most active with IC50 values of 0.84 μM and 0.17 μM, respectively compared to 0.22 μM for compound 1. Of all the analogs tested, 8d was stable in hamster, mouse and human liver microsomes but lost the efficacy with an IC50 of 6.42 μM. Based on the in vitro efficacy and DMPK profile, compounds 8b and 8f seem the best candidates to be screened in further assays.  相似文献   

8.
Two series of novel naphthalin-containing pyrazoline derivatives C1C14 and D1–D14 have been synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. Compound D14 displayed the most potent activity against EGFR and A549 cell line (IC50 = 0.05 μM and GI50 = 0.11 μM), being comparable with the positive control Erlotinib (IC50 = 0.03 μM and GI50 = 0.03 μM) and more potent than our previous compounds C0–A (IC50 = 5.31 μM and GI50 = 33.47 μM) and C0–B (IC50 = 0.09 μM and GI50 = 0.34 μM). Meanwhile, compound C14 displayed the most potent activity against HER-2 and MCF-7 cell line (IC50 = 0.88 μM and GI50 = 0.35 μM), being a little less potent than Erlotinib (IC50 = 0.16 μM and GI50 = 0.08 μM) but far more potent than C0–A (IC50 = 6.58 μM and GI50 = 27.62 μM) and C0–B (IC50 = 2.77 μM and GI50 = 3.79 μM). The docking simulation was performed to analyze the probable binding models and the QSAR models were built for reasonable design of EGFR/HER-2 inhibitors at present and in future. The structural modification of introducing naphthalin moiety reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity. Moreover, the replacement of thiourea skeleton by using benzene ring resulted in the slight diversity of the two series towards specific targets.  相似文献   

9.
Herein, we report the synthesis and screening of cyano substituted biaryl analogs 5(am) as Peptide deformylase (PDF) enzyme inhibitors. The compounds 5a (IC50 value = 13.16 μM), 5d (IC50 value = 15.66 μM) and 5j (IC50 value = 19.16 μM) had shown good PDF inhibition activity. The compounds 5a (MIC range = 11.00–15.83 μg/mL), 5b (MIC range = 23.75–28.50 μg/mL) and 5j (MIC range = 7.66–16.91 μg/mL) had also shown potent antibacterial activity when compared with ciprofloxacin (MIC range = 25–50 μg/mL). Thus, the active derivatives were not only potent PDF inhibitors but also efficient antibacterial agents. In order to gain more insight on the binding mode of the compounds with PDF, the synthesized compounds 5(am) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. In silico ADME properties of synthesized compounds were also analyzed and showed potential to develop as good oral drug candidates.  相似文献   

10.
A new series of triazinoindole analogs 111 were synthesized, characterized by EI-MS and 1H NMR, evaluated for α-glucosidase inhibitory potential. All eleven (11) analogs showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 2.46 ± 0.008 and 312.79 ± 0.06 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Among the series, compounds 1, 3, 4, 5, 7, 8, and 11 showed excellent inhibitory potential with IC50 values 2.46 ± 0.008, 37.78 ± 0.05, 28.91 ± 0.0, 38.12 ± 0.04, 37.43 ± 0.03, 36.89 ± 0.06 and 37.11 ± 0.05 μM respectively. All other compounds also showed good enzyme inhibition. The binding modes of these analogs were confirmed through molecular docking.  相似文献   

11.
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50 = 7.7 μM) and 2 (IC50 = 10.6 μM) as represented by hybrid compound 27 (IC50 = 6.7 μM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 μM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the d-isomers 41 (IC50 = 19.3 μM) and 45 (IC50 = 5.4 μM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.  相似文献   

12.
Bisindole analogs 117 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. Out of seventeen compounds, the analog 1 (IC50 = 1.62 ± 0.04 μM), 6 (IC50 = 1.86 ± 0.05 μM), 10 (IC50 = 2.80 ± 0.29 μM), 9 (IC50 = 3.10 ± 0.28 μM), 14 (IC50 = 4.30 ± 0.08 μM), 2 (IC50 = 18.40 ± 0.09 μM), 19 (IC50 = 19.90 ± 1.05 μM), 4 (IC50 = 20.90 ± 0.62 μM), 7 (IC50 = 21.50 ± 0.77 μM), and 3 (IC50 = 22.30 ± 0.02 μM) showed superior β-glucuronidase inhibitory activity than the standard (d-saccharic acid 1,4-lactone, IC50 = 48.40 ± 1.25 μM). In addition, molecular docking studies were performed to investigate the binding interactions of bisindole derivatives with the enzyme. This study has identified a new class of potent β-glucouronidase inhibitors.  相似文献   

13.
A similarity search on the structural analogs of an inhibitor of BACE-1 with IC50 2.8 μM, which contained a P1 benzothiazole group together with a triazine ring linked by a secondary amine group, was described in this Letter and some more potent inhibitors against BACE-1 were identified. The most potent compound 5 (IC50 = 0.12 μM) increases the inhibitory potency by 24 folds. Our results suggest that a pyrrolidinyl side group at the P3′ and P4′ of the inhibitors are favored for strong inhibition and a small aromatic group at the P4 position is also essential to the potency.  相似文献   

14.
Isatin base Schiff bases (1–20) were synthesized, characterized by 1H NMR and EI/MS and evaluated for α-glucosidase inhibitory potential. Out of these twenty (20) compounds only six analogs showed potent α-glucosidase inhibitory potential with IC50 value ranging in between 2.2 ± 0.25 and 83.5 ± 1.0 μM when compared with the standard acarbose (IC50 = 840 ± 1.73 μM). Among the series compound 2 having IC50 value (18.3 ± 0.56 μM), 9 (83.5 ± 1.0 μM), 11 (3.3 ± 0.25 μM), 12 (2.2 ± 0.25 μM), 14 (11.8 ± 0.15 μM), and 20 (3.0 ± 0.15 μM) showed excellent inhibitory potential many fold better than the standard acarbose. The binding interactions of these active analogs were confirmed through molecular docking.  相似文献   

15.
Histone deacetylases (HDACs) are enzymes involved in tumor genesis and development. Herein, we report a novel series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as HDACs inhibitors. The preliminary biological screening showed that most of our compounds exhibited potent inhibitory activity against HDACs. Within this series, five compounds, 13a (IC50 = 0.58 ± 0.10 μM), 7d (IC50 = 1.00 ± 0.16 μM), 8l (IC50 = 1.06 ± 0.14 μM), 7i (IC50 = 1.17 ± 0.19 μM) and 7a (IC50 = 1.29 ± 0.15 μM) possessed better HDACs inhibitory activity than Vorinostat (IC50 = 1.48 ± 0.20 μM). So these five compounds could be used as novel lead compounds for further design of HDACs inhibitors. The anti-proliferative activities of a few compounds and the structure–activity relationships are also briefly discussed.  相似文献   

16.
Twenty four pyrazoline derivatives modified from Celecoxib were designed and synthesized as bi-inhibitor of COX-2 and B-Raf. They were evaluated for their COX-1/COX-2/B-Raf inhibitory and anti-proliferation activities. Compound A3 displayed the most potent activity against COX-2 and HeLa cell line (IC50 = 0.008 μM; GI50 = 19.86 μM) and showed superb COX-1/COX-2 selectivity (>500), being more potent and selective than positive control Celecoxib or 5-fluorouracil. Compounds A5 and B5 were introduced best B-Raf inhibitory activities (IC50 = 0.15 μM and 0.12 μM, respectively). Compound A4 retained superb bioactivity against COX-2 and HeLa cell line (IC50 = 0.015 μM; GI50 = 23.82 μM) and displayed moderate B-Raf inhibitory activity (IC50 = 3.84 μM). Docking simulation was conducted to give binding patterns. QSAR models were built using bioactivity data and optimized conformations to provide a future modification of COX-2/B-Raf inhibitors.  相似文献   

17.
A series of 2-styryl-5-nitroimidazole derivatives containing 1,4-benzodioxan moiety (3a3r) has been designed, synthesized and their biological activities were also evaluated as potential antiproliferation and focal adhesion kinase (FAK) inhibitors. Among all the compounds, 3p showed the most potent activity in vitro which inhibited the growth of A549 with IC50 value of 3.11 μM and Hela with IC50 value of 2.54 μM respectively. Compound 3p also exhibited significant FAK inhibitory activity (IC50 = 0.45 μM). Docking simulation was performed for compound 3p into the FAK structure active site to determine the probable binding model.  相似文献   

18.
A series of novel 4,5-dihydropyrazole derivatives (3a3t) containing hydroxyphenyl moiety as potential V600E mutant BRAF kinase (BRAFV600E) inhibitors were designed and synthesized. Docking simulation was performed to insert compounds 3d (1-(5-(5-chloro-2-hydroxyphenyl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) and 3m (1-(3-(4-chlorophenyl)-5-(3,5-dibromo-2-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) into the crystal structure of BRAFV600E to determine the probable binding model, respectively. Based on the preliminary results, compound 3d and 3m with potent inhibitory activity in tumor growth may be a potential anticancer agent. Results of the bioassays against BRAFV600E, MCF-7 human breast cancer cell line and WM266.4 human melanoma cell line all showed several compounds had potent activities IC50 value in low micromolar range, among them, compound 3d and compound 3m showed strong potent anticancer activity, which were proved by that 3d: IC50 = 1.31 μM for MCF-7 and IC50 = 0.45 μM for WM266.5, IC50 = 0.22 μM for BRAFV600E, 3m: IC50 = 0.97 μM for MCF-7 and IC50 = 0.72 μM for WM266.5, IC50 = 0.46 μM for BRAFV600E, which were comparable with the positive control Erlotinib.  相似文献   

19.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

20.
A series of Schiff base triazoles 125 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 (IC50 = 132.20 ± 2.89 μM), 13 (IC50 = 152.83 ± 2.39 μM), and 22 (IC50 = 251.0 ± 6.64 μM) were identified as potent inhibitors with superior activities than the standard EDTA (IC50 = 277.69 ± 2.52 μM). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号